Glia Promote Synaptogenesis through an IQGAP PES-7 in *C. elegans*

Graphical Abstract

Highlights
- CDC-42 and IQGAP PES-7 are required for glia-mediated synaptogenesis
- PES-7 acts downstream of CDC-42 to promote synaptic formation
- CHD and GRD domains of PES-7 are required for synaptogenesis
- PES-7 promotes synaptogenesis, most likely through F-actin

Authors
Xiaohua Dong, Shuhan Jin, Zhiyong Shao

Correspondence
shaozy@fudan.edu.cn

In Brief
Dong et al. reveal a role of the conserved CDC-42 and IQGAP/PES-7 in glia-mediated synaptogenesis during postembryonic development. At the glia-neurite contact sites, PES-7 activated by CDC-42 promotes presynaptic formation, possibly through regulating the F-actin assembly, providing insight into the neuronal responses to pro-synaptic signaling from glia.
Glia Promote Synaptogenesis through an IQGAP PES-7 in C. elegans

Xiaohua Dong,1 Shuhan Jin,1 and Zhiyong Shao1,2,*

1Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
2Lead Contact
*Correspondence: shaozy@fudan.edu.cn
https://doi.org/10.1016/j.celrep.2020.01.102

SUMMARY

Synapses are fundamental to the normal function of the nervous system. Glia play a pivotal role in regulating synaptic formation. However, how presynaptic neurons assemble synaptic structure in response to the glial signals remains largely unexplored. To address this question, we use cima-1 mutant C. elegans as an in vivo model, in which the astrocyte-like VCSC glial processes ectopically reach an asynaptic neurite region and promote presynaptic formation there. Through an RNAi screen, we find that the Rho GTPase CDC-42 and IQGAP PES-7 are required in presynaptic neurons for VCSC glia-induced presynaptic formation. In addition, we find that cdc-42 and pes-7 are also required for normal synaptogenesis during postembryonic developmental stages. PES-7 activated by CDC-42 promotes presynaptic formation, most likely through regulating F-actin assembly. Given the evolutionary conservation of CDC-42 and IQGAPs, we speculate that our findings in C. elegans apply to vertebrates.

INTRODUCTION

Synapses are specialized structures that allow electrical or chemical signals to pass from neurons to their target cells. They are formed with remarkable specificity at both cellular and subcellular levels (Huang, 2006; White, 2007; Williams et al., 2010; Yogev and Shen, 2014). After their formation, synapses remain dynamic, undergoing processes that include maturation, pruning, and experience-dependent reshaping (Bosworth and Allen, 2017; Nesikyde and Gross, 2017). While prior research has identified molecules regulating synaptic formation and stability (Chai et al., 2017; Lin and Koleske, 2010; Melom and Littleton, 2011; Shi et al., 2012), less is known about the maintenance of synaptic spatial specificity during postnatal growth.

Glia play vital roles in synaptic formation and maintenance (Bosworth and Allen, 2017; Nesikyde and Gross, 2017). Astrocytes express secreted and adhesion molecules, including thrombospondins, glypicans, SPARC1, neoligins, which promote or suppress synaptic formation, maturation, or elimination (Christopherson et al., 2005; Garrett and Weiner, 2009; Göritz et al., 2002; Kucukdereli et al., 2011; Stogsdill et al., 2017). In addition, astrocytes provide spatial cues for synaptogenesis (Hochstim et al., 2008; Molofsky et al., 2014; Tsai et al., 2012). Glial contributions to synaptic development are evolutionally conserved in invertebrates such as Drosophila and Caenorhabditis elegans (Colón-Ramos et al., 2007; Muthukumar et al., 2014). Despite the vital role of glia in synaptogenesis, the molecular mechanisms by which neurons assemble synapses in response to glial signaling remain unclear.

We previously identified a sialin homolog, CIMA-1, required for astrocyte-like VCSC (ventral cephalic sheath cell) glia-mediated synaptic position maintenance (Shao et al., 2013). In cima-1 mutants, VCSC glia promote synaptogenesis by making ectopic contact with the neurites of A1Y interneurons during postembryonic development, which provides an excellent model to address the mechanisms underlying glia-mediated synaptogenesis during postembryonic development (Shao et al., 2013). Through an RNAi screen, we found that cdc-42 and pes-7, which encode a Rho guanosine triphosphatase (GTPase) and an IQ GTPase activation protein (IQGAP), respectively, are required in the presynaptic neurons for the glia-mediated synaptogenic activity. IQGAPs are evolutionally conserved scaffold proteins that contain a calponin homology domain (CHD) at the NHterminal, IQ and GAP-related domains (GRDs) in the middle, and a Ras GTPase-activating protein-C-terminal domain (RasGAP-C) at the C-terminal. Through these domains, IQGAPs bind a variety of partners to modulate diverse cellular functions (Cao et al., 2015; Hedman et al., 2015; Jausoro et al., 2012; Smith et al., 2015). In the nervous system, IQGAPs regulate memory formation and neurite growth (Gao et al., 2011; Jausoro et al., 2013; Schrick et al., 2007; Swiech et al., 2011; Wang et al., 2007). However, their roles in presynaptic development remain largely unknown.

The present study shows that the A1Y ectopic synaptogenesis induced by VCSC glia in cima-1 mutants requires CDC-42 and the only IQGAP PES-7 in C. elegans. In addition, we found that both CDC-42 and PES-7 are required for synaptogenesis in different types of neurons during postembryonic stages in wild-type (WT) animals. Mechanistically, PES-7 activated by CDC-42 promotes presynaptic assembly, most likely by regulating F-actin polymerization at the glia-neuron contact sites.

RESULTS

CDC-42 and PES-7 Are Required for cima-1(wy84) Ectopic Synaptogenesis

To understand the molecular mechanisms underlying glia-mediated synaptogenesis during postembryonic stages, we used...
Figure 1. CDC-42 and PES-7 Are Required for the Formation of Ectopic Synapses in *cima-1*(wy84) Mutants

- **(A)** Illustration showing the AIY interneurons (gray) in the head of *C. elegans* (Altun et al., 2002–2019). Presynaptic structures are indicated in green. The AIY neurites are divided into three zones as described in the text and by Shao et al. (2013).

- **(B)** Schematics describe the genomic structures of *cima-1*, *cdc-42*, and *pes-7*. Boxes and lines indicate exons and introns. The conserved calponin homology domain (CHD), IQ domain, GTPase-activating protein-related domain (GRD), and the Ras GTPase-activating protein-C-terminal domain (RasGAP-C) are highlighted in red, orange, purple, and blue, respectively. The *cima-1*(wy84), *pes-7*(gk123), and *cdc-42*(ok825) mutant sites are indicated. Scale bar, 500 bp.

- **(C-O)** Confocal micrographs of the AY presynaptic structure labeled with the synaptic vesicle marker GFP::RAB-3 (green, *C*), SNB-1::YFP (yellow, *I*-K), or the synaptic active zone marker GFP::SYD-1 (red, L-O) corresponding to the region in the square dashed box in (A). Dashed boxes mark zone 1 of AIY interneurons. The scale bar (10 μm) in (C) applies to (D–O). While synaptic signals are not present in the zone 1 in WT (C and L), *pes-7*(gk123) and *cdc-42*(ok825) mutant (E and F), they ectopically emerge in the *cima-1*(wy84) mutants (D, I, and M). The ectopic synapses are suppressed by *pes-7*(gk123) or *cdc-42*(ok825) mutant (E and F), and *pes-7*(gk123) and *cdc-42*(ok825) suppress the ectopic synapses beyond the contact area (Figures S2E–S2H). Since all of the synaptic markers tested showed consistent results, we only used the integrated GFP::RAB-3 marker for most of the rest of the analysis for convenience.

- To further confirm the *cima-1* suppression role of *cdc-42* and *pes-7*, we quantified the expressivity of the suppression effect of *cdc-42*(ok825) and *pes-7*(gk123) on *cima-1*(wy84) by calculating the ratio of the ventral:total synaptic lengths (see Method Details; Shao et al., 2013). While the ratio in the *cdc-42*(ok825) and *pes-7*(gk123) mutants is similar to that in WT animals (0.23, 0.24, and 0.24 in WT, *cdc-42*(ok825), and *pes-7*(gk123) mutants, respectively) (*p = 0.29 and 0.17 for *cdc-42*(ok825) and *pes-7*(gk123) as compared to WT, respectively; Figure 1T), we found that both robustly suppress the ratio of *cima-1*(wy84) mutants (0.35, 0.24, and 0.24 in *cima-1*(wy84), *cima-1*(wy84);*cdc-42*(ok825) and *cima-1*(wy84);*pes-7*(gk123), respectively) (*p < 0.001 for both double mutants compared to *cima-1*(wy84); Figure 1T).

- The above data showed that both *cdc-42*(ok825) and *pes-7*(gk123) suppress the ectopic synapses in *cima-1*(wy84) at adult day 1 stage. To exclude the possibility that *cdc-42*(ok825) and *pes-7*(gk123) delay the ectopic synapse development, we examined the suppression effect until adult day 5 stage and found that the degree of suppression remained until then (Figure S3), which...
excludes the possibility that cdc-42(ok825) and pes-7(gk123) delay ectopic synapse development in cima-1(wy84) mutants. These data collectively demonstrate that cdc-42 and pes-7 are required for cima-1(wy84)-induced ectopic synaptogenesis, as demonstrated in the model (Figures 1P–1R).

CDC-42 and PES-7 Are Required for Normal Synaptogenesis during Postembryonic Stages

The above data show that the AIY synaptic distribution is unaffected in either cdc-42(ok825) or pes-7(gk123) mutants. To address the physiological role of cdc-42 and pes-7, we quantified the synaptic fluorescence intensity of the synaptic markers in AIY interneurons. The synaptic intensity of all of the synaptic markers tested (including RAB-3, SNB-1, and SYD-1) are significantly reduced in both cdc-42(ok825) and pes-7(gk123) mutants (Figures 1C, 1E, 1F, and 1U–1W), suggesting that both cdc-42 and pes-7 are required for AIY normal synaptogenesis. We noticed that the synaptic intensity was reduced in cima-1(wy84) mutants, which is probably the side effect of the spatial maintenance defect. The synaptic intensity was further reduced in both double mutants, which is consistent with the above data that both cdc-42 and pes-7 are required for cima-1(wy84) ectopic synaptogenesis. The data suggest that cdc-42 and pes-7 are required not only for the cima-1(wy84) ectopic synaptogenesis but also for WT synaptic formation in the AIY interneurons.

To determine when cdc-42 and pes-7 are required for synaptogenesis in WT animals, we quantified the intensity of GFP::RAB-3 at different developmental stages. We found that the GFP intensity is not affected at the newly hatched L1 stage, but significantly reduced at the adult day 1 stage (Figures S4A–S4D), indicating that both cdc-42 and pes-7 are required for AIY presynaptic assembly specifically during postembryonic stages.

To address whether cdc-42 and pes-7 are sufficient to promote synaptogenesis in AIY neurons, we expressed extra copies of cdc-42 and pes-7 in WT animals. We found that overexpressing either cdc-42 or pes-7 results in ectopic synapses only at the adult stage, not during larval stages, suggesting that the overexpression is sufficient to promote the ectopic synapse formation in AIY (Figure S5A). Furthermore, we found that pes-7 overexpression, but not cdc-42 overexpression, significantly increases the GFP::RAB-3 intensity since later larval stage (Figure S5B). These data suggest that overexpressing pes-7 is sufficient to promote synaptogenesis at the correct position during larval stages, but in the wrong area (zone 1) at the adult stage, indicating its critical roles in regulating synaptic temporal and spatial specificity in AIY interneurons. The reason why cdc-42 overexpression is not sufficient is probably because it acts upstream in the pathway or its expression or function is strictly regulated.

Next, we wanted to determine whether the role of cdc-42 and pes-7 in synaptic assembly is general or AIY specific. We examined the synaptic marker in other neurons, including the interneuron AIB and sensory neurons ASE and AWB. Except for the AIB, whose presynaptic intensity is reduced in cdc-42(ok825) at the L1 stage, the intensity of those neurons is not affected at the newly hatched L1 stage, but it is significantly reduced at the adult stage (Figures S4E–S4P). These results suggest that the requirement of cdc-42 and pes-7 for presynaptic assembly during postembryonic development is most likely general rather than AIY specific.

cdc-42 and pes-7 Promote Synaptogenesis in Response to VCSC Glial Signaling

The formation of ectopic synapses in cima-1(wy84) mutants is mainly mediated by the contact between the VCSC glia and AIY interneurons (Shao et al., 2013). The suppression of AIY ectopic synapses by cdc-42(ok825) or pes-7(gk123) could occur either through altering VCSC glial morphology or blocking synaptogenic signaling from the glia. To differentiate these two models, we simultaneously visualized the AIY synaptic marker GFP::RAB-3 and the mCherry-labeled VCSC glia. The glial endfeet only reach zone 2, where synapses are enriched in WT animals (Figures 2A and 2B), which is consistent with previous reports (Shao et al., 2013; White et al., 1986). However, the endfeet extend posteriorly and contact the AIY zone 1 in cima-1(wy84) mutants (Figures 2C, 2D, and 2I; Shao et al., 2013). Although both pes-7(gk123) and cdc-42(ok825) suppress the ectopic synapses, neither of them suppresses the extension of the glial endfeet of cima-1(wy84) mutants (Figures 2E–2J and S6). These data are consistent with the model that cdc-42 and pes-7 block synaptogenic signaling downstream of VCSC glia. To further test the model, we ablated VCSC glia by expressing cell apoptosis factors described by Chelur and Chaffie (2007) in cima-1(wy84), cima-1(wy84);cdc-42(ok825), and cima-1(wy84);pes-7(gk123) mutants. Our quantitative data show that the degrees of ectopic synaptic suppression by the combination of genetic mutations and glia ablation are similar to these just by pes-7(gk123) or cdc-42(ok825) mutation (Figure 2J). These results collectively suggest that cdc-42 and pes-7 act downstream of VCSC glia to promote synaptogenesis in cima-1(wy84) mutants.

cdc-42 and pes-7 Act Cell Autonomously in AIY to Promote Synaptic Formation in cima-1(wy84)

To understand where cdc-42 and pes-7 act, we sought to determine where cdc-42 and pes-7 are expressed. We found that Pccdc-42::GFP is broadly expressed in early embryogenesis (Figures S7A–S7E). In larval and adult stages, the reporter is highly enriched in the nervous system (Figures S7E–S7E'; data not shown), which is consistent with previous reports (Neukomm et al., 2014). Similarly, Ppes-7::pes-7::GFP expression begins at the gastrulation stage in only a few cells (Figure S7F) and broadens as the embryo develops (Figures S7G–S7I). Consistent with its roles in cell adhesion, PES-7::GFP localizes to the cell cortex (Figures S7G–S7I). In the larval or adult stages, the expression of Ppes-7::pes-7::GFP is also enriched in the nervous system, with some in the epidermis, muscles, and intestines (Figures S7J–S7J'). Both cdc-42 and pes-7 reporters are expressed in the AIY interneurons (Figures S7K–S7P).

Next, we expressed cdc-42 or pes-7 cDNA with tissue-specific promoters in the corresponding double mutants. We found that driving either of them expression with its own promoter, the pan-neuronal promoter (Prab-3), or the AIY specific promoters (Ptxt-3 or Pmod-1) rescues and restores the ectopic synapses and the intensity of synaptic markers (Figures 3A–3P), while driving cdc-42 or pes-7 under body-wall muscle-, intestine-, or epidermis-specific promoters (Pmyo-3, Pges-1, Pdpy-7)
respectively) does not (Figures 3M–3P). These data indicate that both cdc-42 and pes-7 act cell autonomously in the AIY interneurons to promote synaptic formation in cima-1(wy84) mutants, which is consistent with the aforementioned model; cdc-42 and pes-7 act downstream of VCSC glia.

CDC-42 and PES-7 Localize to Presynaptic Sites

To further understand how CDC-42 and PES-7 promote the ectopic synapse formation, we determined their subcellular localization in AIY interneurons by fusing CDC-42 and PES-7 with mCherry. We expressed the mCherry-fused proteins in the AIY interneurons and found that both CDC-42 and PES-7 are enriched at presynaptic sites, colocalizing with the presynaptic marker GFP::RAB-3 (Figures 4A–4B’’). Consistent with the previous overexpression data, mCherry::PES-7 expression in AIY interneurons induces far more ectopic synapses than does the expression of mCherry::CDC-42 (Figures 4A and 4B), suggesting that the mCherry tag does not affect the function of either CDC-42 or PES-7, and the subcellular localizations are most likely to be correct. In addition, when mCherry::PES-7 and GFP::CDC-42 are simultaneously expressed in AIY interneurons, they colocalize (Figures 4C–4C’’). These data indicate that both PES-7 and CDC-42 localize to presynaptic sites in the AIY interneurons, promoting synaptic assembly.

PES-7 Acts Downstream of CDC-42 to Promote Synaptic Formation

To determine whether cdc-42 and pes-7 act in the same genetic pathway, we generated cima-1(wy84);cdc-42(ok825);pes-7(gk123) triple mutants. We found that the degree of ectopic synapse suppression by the double mutations of pes-7 (gk123) and cdc-42 (ok825) is similar to that achieved by either of the single mutations (Figures 5A–5F), suggesting that cdc-42 and pes-7 act in the same genetic pathway to promote synaptic assembly.

IQGAP can be a regulator or an effector of CDC42 (Brown and Sacks, 2006). To determine whether PES-7 acts upstream or downstream of CDC-42, we overexpressed pes-7 or cdc-42 in the WT animals, the cima-1(wy84) mutants,
the cima-1(wy84);cdc-42(ok825) double mutants, the cima-1(wy84);pes-7(gk123) double mutants, and the pes-7(gk123);cdc-42(ok825);cima-1(wy84) triple mutants. We found that pes-7 overexpression results in the robust increase in ectopic synapses at adult stages, but not larval stages, regardless of genetic background—except for cima-1(wy84) mutation, which exhibits

![Image](https://example.com/image.png)
high-penetrance ectopic synapses by itself (Figures 5G). While cdc-42 overexpression induces only a moderate increase in ectopic synapses in the WT animals and restores the ectopic synaptic distribution in the cima-1(wy84);cdc-42(ok825) double mutants, it does not promote the formation of ectopic synapses in pes-7(gk123) mutants (Figure 5G). The data indicate that pes-7 overexpression promotes the ectopic synaptogenesis in a cdc-42-independent manner, while cdc-42 overexpression does so only when pes-7 is present, suggesting that pes-7 is required for cdc-42 function and most likely acts downstream of cdc-42.

The Active Form of CDC-42 Is Required to Promote Synaptic Formation

Rho GTPases cycle between the active GTP-bound and the inactive GDP-bound forms (Narumiya, 1996). Single amino acid substitution of these GTPases could result in either constitutively active (Q61L or G12V) or inactive (T17N) forms (Ahmadian et al., 1997; Muraoka et al., 2012). To address whether the CDC-42 active form is required for promoting synaptic formation in cima-1(wy84) mutants, we expressed either CDC-42 (Q61L) or CDC-42 (T17N) in the cima-1(wy84);cdc-42(ok825) double mutants (Figure 6A). We found that the active form of CDC-42 (Q61L) rescues cdc-42(ok825) and restores the ectopic synaptic structures in the double mutants, while the inactive form of CDC-42 (T17N) does not (Figure 6B). In addition, we observed that CDC-42 (T17N) acts as a dominant-negative mutant and suppresses the ectopic synapses in cima-1(wy84), which phenocopies the cdc-42(ok825) loss-of-function mutants (Figure 6B). These data suggest that the active form of CDC-42 is required for ectopic synapse formation in cima-1(wy84) mutants.

The CHD and GRD Domains of PES-7 Are Required for Promoting Synaptic Formation

Similar to IQGAPs in mammals, PES-7 contains CHD, IQ, GRD, and RasGAP-C domains (Weissbach et al., 1994; Mateer et al., 2004; Figure 6C). To determine which domain of PES-7 is required to promote ectopic synaptic formation in cima-1(wy84) mutants, we generated the PES-7 truncation constructs DCHD, DIQ, DGRD, and DRasGAP-C and a fragment containing only the CHD and upstream sequences (Figure 6C). We tested the function of these deletion variations of PES-7 in WT or cima-1(wy84);pes-7(gk123) double mutants. The function of PES-7 is not affected when IQ or RasGAP-C is deleted. However, the function is completely abolished when CHD, GRD, or both are deleted (Figures 6D and 6E). These results indicate that both CHD and GRD are required for the ectopic synaptic formation in cima-1(wy84) mutants.

PES-7 Promotes Presynaptic Formation, Most Likely by Regulating F-Actin Assembly

IQGAPs interact with a variety of partners through different domains (Hedman et al., 2015; Smith et al., 2015). The data above demonstrate that the pro-synaptogenesis function of PES-7 requires the CHD domain, which can interact with and promote F-actin assembly (Jausoro et al., 2013). To determine whether F-actin assembly is associated with presynaptic formation in AIY interneurons, we visualized F-actin with GFP-tagged utrophin (Burkel et al., 2007). We found that, akin to the synaptic distribution, the utrophin localizes to the AIY interneuron synaptic zones 2 and 3, but not to the asynaptic zone 1 in WT animals and pes-7(gk123) or cdc-42(ok825) single mutants (Figures 7A, 7B, and 7G). Similarly, the ectopic utrophin emerges at zone 1 in cima-1(wy84) adults, but is significantly suppressed by cdc-42(ok825), pes-7(gk123), or pes-7(gk123);cdc-42(ok825) double mutations (Figures 7C–7E). These data support the hypothesis that CDC-42 and PES-7 promote presynaptic formation by regulating F-actin assembly. To test this model further, we quantified the intensity of utrophin::GFP. Consistent with the...
intensity of synaptic markers, both cdc-42(ok825) and pes-7(gk123) significantly reduce the F-actin in either WT or cima-1(wy84) mutant background (Figure 7H), suggesting that both cdc-42 and pes-7 are required for F-actin assembly. In addition, we found that overexpressing pes-7 is sufficient to promote F-actin assembly as assayed by the utrophin::GFP localization and intensity (Figures 7F–7H). These results consistently support a model in which cdc-42 and pes-7 promote synaptic formation by assembling F-actin.

Our results so far support a model in which, in response to VCSC glial signaling, CDC-42 and PES-7 promote synaptic formation at the correct zone 2 position in WT animals during postembryonic development stages and at the ectopic zone 1 position in cima-1(wy84) mutants, most likely through assembling F-actin (Figure 7I).

DISCUSSION

Glia play critical roles in synaptogenesis in both vertebrates and invertebrates (Bosworth and Allen, 2017; Colón-Ramos, 2009; Muthukumar et al., 2014). In *C. elegans*, the astrocyte-like VCSC glia secrete netrin to guide axonal growth and promote synaptogenesis during embryogenesis (Colón-Ramos et al., 2007). Local netrin modulates the receptor UNC-40 clustering, which then regulates synaptic formation during the embryonic stage through CED-10/RAC1 and MIG-10/Lamellipodin (Stavoe et al., 2012). During postnatal growth, VCSC glia-neuron contact is required for maintaining synaptic position (Shao et al., 2013).

The present study demonstrates that VCSC glia-neuron contact activates IQGAP PES-7 through the GTPase CDC-42 at presynaptic sites, which then promotes synaptogenesis, most likely through regulating F-actin assembly.

In HSN motor neurons, the presynaptic formation through the WVE-1/WAVE complex-mediated local assembly of F-actin (Chia et al., 2014). The local F-actin then recruits active zone proteins SYD-1 and SYD-2 through the neurabin NAB-1 adaptor (Chia et al., 2012). AIY interneuron presynaptic assembly in the embryonic stage is also achieved through F-actin (Stavoe and Colón-Ramos, 2012). Therefore, the role of F-actin in presynaptic assembly could be a general mechanism used in different neuron types and cross-developmental stages.

VCSC Glia Promote Synaptogenesis through CDC-42 and IQGAP/PES-7

In this study, we demonstrated that CDC-42 and PES-7 are required for VCSC glia-mediated synaptogenesis. Three lines of evidence support this. First, the knocking down or loss-of-function mutation of cdc-42 or pes-7 suppresses the cima-1(wy84) mutation-induced ectopic synapse formation, but not the glial extension; second, expressing cdc-42 or pes-7 in AIY interneurons restores the ectopic synapses in the corresponding double mutants; and third, CDC42 and PES-7 are localized to presynaptic sites in AIY neurons.

C. elegans CDC-42, first described in 1993 (Chen et al., 1993), regulates many cellular behaviors, including cell polarity, invasion, and neuronal protrusion (Gotta et al., 2001; Dyer et al., 2010; Kay and Hunter, 2001; Qiu et al., 2000; Lohmer et al., 2016; Alan et al., 2013). In mammals, the homolog CDC42 also regulates
Spatiotemporal Regulation of Synaptic Assembly

Synaptic connections are precisely regulated at both temporal and spatial levels. The AIY presynaptic distribution of *C. elegans* is established during embryogenesis and maintained thereafter (Shao et al., 2013). During embryogenesis, AIY synaptic formation is mainly regulated by Netrin/UNC-6 signaling (Colón-Ramos et al., 2007). In this study, we found that both CDC-42 and PES-7 are required for postembryonic synaptic formation. In addition, when PES-7 is overexpressed or overactivated, ectopic synapses form, and the AIY synaptic spatial specificity is compromised specifically at the adult stage. These results suggest that CDC-42 and PES-7 play a critical role in the synaptic spatiotemporal specificity. We also showed that the role of PES-7 in synaptogenesis is not AIY specific, but more general.

In vertebrates, astrocytes play critical roles in synaptic formation and plasticity (Alan et al., 2018; Baldwin and Eroglu, 2017). Recent studies revealed that astrocytes are spatially diverse, providing spatial cues for synaptogenesis (Molofsky et al., 2014). However, how presynaptic neurons respond to astrocytic cues to assemble synaptic structure remains unknown. VCSC glia in *C. elegans* are similar to astrocytes in vertebrates from the aspects of origins, function, and transcription profiling (Colón-Ramos et al., 2007; Katz et al., 2018; Katz et al., 2019).

dendritic spine formation and plasticity (Tashiro et al., 2000; Tolias et al., 2011; Hedrick et al., 2016; Martin-Vilchez et al., 2017; Murakoshi et al., 2011; Bijata et al., 2017). Recently, CDC42 was also found to be required for presynaptic development in *Drosophila* and mice (Imai et al., 2016; Rodal et al., 2008), indicating that its roles in presynaptic assembly are evolutionarily conserved.

CDC-42 promotes presynaptic assembly through PES-7, an IQGAP that regulates cytoskeleton dynamics under both normal and pathological conditions (Hedman et al., 2015; Watanabe et al., 2015; Lee et al., 2012). In the vertebrate nervous system, IQGAPs regulate dendritic spine formation and morphogenesis (Gao et al., 2011; Jausoro et al., 2013). In *C. elegans*, we found that PES-7 regulates presynaptic assembly in response to glia signaling. Along with the finding that PES-7 regulates cell cytokinesis and possibly GABAergic synaptic vesicle trafficking (Locke et al., 2009; Skop et al., 2004), these data indicate that the role of PES-7 in synaptogenesis is highly conserved.

Figure 6. The Active Form of CDC-42 and the CHD and GRD Domains of PES-7 Are Required for Ectopic-Synaptic Formation

(A) A schematic description of the cdc-42 genomic structure and locations of the constitutive-active (Q61L) and dominant-inactive (T17N) sites. (B) Quantification of the percentage of animals with ectopic AIY presynapses for the indicated genotypes. TG, transgene; no TG, no transgene. The total number of animals (N) and the replicates (n) are indicated in each bar for each genotype, as they are for the transgenic lines created and the number of transgenic lines (n2) examined (all using the convention N/n1/n2). Statistical analysis is based on 1-way ANOVA followed by Dunnett’s test. Error bars represent SEMs; **p < 0.01, ***p < 0.001.
Figure 7. pes-7 May Promote Synaptogenesis by Regulating F-Actin Assembly

(A–F) Confocal micrographs of AIY interneurons labeled with F-actin binding marker utrophin::GFP in WT (A), pes-7(gk123) (B), cima-1(wy84) (C), cima-1(wy84);cdc-42(ok825) (D), cima-1(wy84);pes-7(gk123) (E), and the Ppes-7::pes-7 transgene (F) animals. Dashed boxes mark zone 1 of the AIY interneurons. The scale bar (10 μm) in (A) applies to (B–F).

(G) Quantification of the percentage of animals with ectopic AIY GFP-tagged utrophin for the indicated genotypes.

(H) Quantification of utrophin::GFP intensity for the indicated genotypes.

(I) A model describing synaptic spatial specificity mediated by glia-neurons/CDC42-IQGAP. The total number of animals (N) and the replicates (n1) are indicated in each bar for each genotype, as they are for the transgenic lines created and the number of transgenic lines (n2) examined (all using the convention N/n1/n2). Statistical analysis is based on 1-way ANOVA followed by Dunnett’s test. Error bars represent SEMs; n.s., not significant; ***p < 0.001.
CDC-42 and PES-7 are also functionally conserved. We speculate that presynaptic neuronal responses to synaptogenesis cues from VOSC glia apply to other animal systems.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- LEAD CONTACT AND MATERIALS AVAILABILITY
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
- METHOD DETAILS
 - Plasmids and transformation
 - RNA interference
 - Confocal microscopy and imaging analysis
- QUANTIFICATION AND STATISTICAL ANALYSIS
- DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2020.01.102.

ACKNOWLEDGMENTS

We are grateful to Dr. D.A. Colón-Ramos; Dr. S. Cai; the Caenorhabditis Genetics Center (CGC), which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440) for strains and plasmids; Dr. W. Zou, Dr. M. Ding, and members of the Shao laboratory for their comments; and Dr. M. Zhou, Dr. Y. Shi, and Dr. M. Jiang from the Institute of Brain Science (IOBS) facility core at Fudan University. Illustrations in Figures 1A, 4A, 4E, 4H, and 4M came from WormAtlas (https://www.wormatlas.org), with or without modification, with permission from Z.F. Altun and D.H. Hall. This work was supported by the Natural Science Foundation of China (31471026, 31872762), the Shanghai Municipal Science and Technology Major Project (no. 2018SHZDZX01), and ZJLab.

AUTHOR CONTRIBUTIONS

X.D. and Z.S. conceived and designed the project. X.D. and S.J. performed the experiments. X.D. and Z.S. analyzed the data and interpreted the results. X.D. and Z.S. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 15, 2019
Revised: November 11, 2019
Accepted: January 29, 2020
Published: February 25, 2020

REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli, OP50</td>
<td>Caenorhabditis Genetics Center</td>
<td>WormBase ID: OP50</td>
</tr>
<tr>
<td>Escherichia coli, DH5x</td>
<td>NCM Biotech</td>
<td>Cat#MD101-1</td>
</tr>
<tr>
<td>Escherichia coli, HT115</td>
<td>Caenorhabditis Genetics Center</td>
<td>WormBase ID: HT115(DE3)</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trizol</td>
<td>Ambion</td>
<td>Cat#15596026</td>
</tr>
<tr>
<td>IPTG</td>
<td>Amresco</td>
<td>Cat#367-93-1</td>
</tr>
<tr>
<td>Mucsmol</td>
<td>Tocris Bioscience</td>
<td>Cat#0289</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>Emdchemicals</td>
<td>Cat#539480</td>
</tr>
<tr>
<td>Agar</td>
<td>Sigma</td>
<td>Cat#V900500</td>
</tr>
<tr>
<td>Peptone</td>
<td>Sigma</td>
<td>Cat#V900885</td>
</tr>
<tr>
<td>Tryptone</td>
<td>Sigma</td>
<td>Cat#LP0042</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>Sigma</td>
<td>Cat#LP0021</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phanta® Max Super-Fidelity DNA Polymerase</td>
<td>Vazme</td>
<td>Cat#P505-d1</td>
</tr>
<tr>
<td>Zippy Plasmid Miniprep Kit</td>
<td>ZYMO Reseach</td>
<td>Cat#D4020</td>
</tr>
<tr>
<td>Zymoclean Gel DNA Recovery Kit</td>
<td>ZYMO Reseach</td>
<td>Cat#D4008</td>
</tr>
<tr>
<td>GoScrip™ Reverse Transcription System</td>
<td>Promega</td>
<td>Cat#A5001</td>
</tr>
<tr>
<td>RQ1 RNase-FREE DNase Kit</td>
<td>Promega</td>
<td>Cat#M6101</td>
</tr>
<tr>
<td>Gateway BP Clonase II Enzyme Mix</td>
<td>Invitrogen</td>
<td>Cat#11789</td>
</tr>
<tr>
<td>Seamless Cloning Kit</td>
<td>Beyotime</td>
<td>Cat#D7010M</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Table S2 for the detail strain information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Table S3 for primer sequences and information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaris x64 7.6.5</td>
<td>N/A</td>
<td>https://imaris.oxinst.com/</td>
</tr>
<tr>
<td>Adobe Illustrator CC2019</td>
<td>N/A</td>
<td>https://www.adobe.com</td>
</tr>
<tr>
<td>Graphpad Prism5</td>
<td>N/A</td>
<td>https://www.graphpad.com</td>
</tr>
<tr>
<td>Adobe photoshop CC</td>
<td>N/A</td>
<td>https://www.adobe.com</td>
</tr>
</tbody>
</table>

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Zhiyong Shao (shaozy@fudan.edu.cn). All *C. elegans* strains generated in this study are available on request from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C. elegans strains were cultured at 21°C on nematode growth media (NGM) agar plates seeded with *Escherichia coli* OP50 (Brenner, 1974). Bristol N2 is used as the wild-type background. The following mutant alleles were used in this study: *cima-1(wy84)* IV, *cdc-42(ok825)* II, *pes-7(gk123)* I. Strains used in this study are listed in **Table S2**. Animals were scored at adult day 1 stage unless specified.

METHOD DETAILS

Plasmids and transformation

Constructs were built with either the pSM vector (derivation of pPD49.26) (Shen and Bargmann, 2003), gateway system (Invitrogen), or L4440 for RNAi (Kamath and Ahringer, 2003). RNAi constructs were made by inserting target cDNA into the Xmal or NotI site of the
L4440. All cdc-42 plasmids are made with the pSM (Shen and Bargmann, 2003). Endogenous and tissue specific pes-7 rescue plasmids were generated with gateway system (Basherudin and Curtis, 2006). PES-7 truncation constructs were made by fragment recombination (Gibson et al., 2009). Detailed information is described in Table S3.

Transgenic strains were generated by microinjections as previously (Mello and Fire, 1995). We used the Phlh-17::mCherry (20ng/μl), Punc-122::GFP (20ng/μl) or Punc-122::RFP (20ng/μl) as coinjection markers. All transgenes and the corresponding concentrations of the plasmids are listed in Table S2.

RNA interference

Standard feeding RNAi screen was performed (Kamath and Ahringer, 2003). Briefly, bacteria HT115 carrying the empty vector L4440 or the same vector inserted with the target cDNA between the double T7 promoter that can generate the double strand mRNA to interfere the target gene expression were used as the nematode C. elegans food. Empty vector and dpy-7, a gene that suppresses cima-1(wy84) (Shao et al., 2013), were used as negative and positive controls. Synchronized L4 animals were fed with RNAi bacteria strains with the control vector or a vector expressing the target double strand mRNA until the F1 generation reaches adult day 1 for the synaptic phenotype scoring. FDU937 [cima-1(wy84);wyIs45(Ptx-3::GFP::RAB-3)] was used in the RNAi screen. Genes screened are listed in the Table S1.

Confocal microscopy and imaging analysis

Synchronized animals were anaesthetized with muscimol and mounted on 3% agarose pad for phenotyping or imaging. AIY ectopic synapses were those at the AIY zone 1 region indicated by dashed boxes in figures.

Images presented in this study were obtained using either Perkin Elmer UltraVIEW VoX or Andor Dragonfly Spinning Disc Confocal Microscope with 40x objectives, 488nm laser for GFP and 561nm laser for mCherry. For fluorescent intensity quantification, all images were taken with Andor Dragonfly Spinning Disc Confocal Microscope with 40x objective. The Z series of optical sections were acquired 0.5 μm step size. Adobe photoshop CC was used to rotate and crop the image.

QUANTIFICATION AND STATISTICAL ANALYSIS

We quantified the percentage of animals with ectopic synapses using a Nikon Ni-U fluorescent microscope. Animals were considered to have ectopic synapses when synaptic markers were detected in the AIY zone 1 region (Shao et al., 2013). At least three biological replicates were obtained for each quantification. The total number of animals, biological replicates and the number of extra-chromosomal lines used are indicated in each bar of the graphs. Adult phenotypes were scored 24 hours after the larva L4 stage. For the larval phenotype, eggs collected within a two-hour window were cultured for 12, 21, 29, and 38 hours to reach the L1, L2, L3, and L4 stages. Imaris was used to quantify the total presynaptic fluorescence intensity. Data were obtained from at least two independent transgenic lines and three biological replicates. The ratio of presynaptic length was calculated as the sum of the lengths of zone 2 and the length of ectopic synapses in zone 1 divided by total synaptic length (b/(a+b), a and b are indicated in the Figures 1P–1R) (Shao et al., 2013). All quantitative data were collected blindly.

The graphical data are presented as mean ± SEM. Statistics for comparisons between two groups were performed with two-tailed Student’s t tests. Comparisons among more than two groups were performed with one-way or two-way analyses of variance (ANOVA). Statistical analyses in this study were completed using GraphPad Prism software (version 5.0).

DATA AND CODE AVAILABILITY

This study did not generate any unique datasets or code.