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Abstract ������

Oxytocin (OXT) neurons in paraventricular nucleus of hypothalamus (PVN) are involved in ������

modulating multiple functions, including social, maternal, feeding, and emotional related ������

behaviors. PVN OXT neurons are canonically classified into magnocellular (Magno) and ���� ��

parvocellular (Parvo) subtypes. However, morpho-electric properties and the diversity of PVN ������

OXT neurons are not well investigated. In this study, we profiled the morpho-electric ������

properties of PVN OXT neurons by combining transgenic mice, electrophysiological recording, ������

morphological reconstruction, and unsupervised clustering analyses. Total 224 PVN OXT ������

neurons from 23 mice were recorded and used for analyses in this study, and 29 ������

morpho-electric parameters were measured. Magno and Parvo OXT neurons have prominent ������

differences in their morpho-electric features, and PVN OXT neurons in male and female mice ������

share similar neuronal properties. Some morpho-electric features of PVN OXT neurons, ������

especially Magno neurons, exhibit significant diverse changes along the rostral–caudal axis. ������

Furthermore, we find that PVN OXT neurons are classified into at least 6 subtypes based on ������

their morpho-electric properties via unsupervised clustering. Only one Magno-Parvo mixed ������

subtype in posterior PVN subregion, but not the other five subtypes, showed significant ������

neuronal activity change in different feeding conditions. Our study supports the diversity of ������

PVN OXT neurons and subtle neuron classification will promote excavating the functions of ������

oxytocinergic system. ������

 ������

Significance Statement: OXT is well known for its function in labor induction, but it also ������

plays multiple roles in social, feeding, and emotional behaviors via modulating different brain ������
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regions. PVN OXT neurons are traditionally classified into magnocellular and parvocellular. ������

However, functional and single-cell transcriptomic studies indicate OXT neurons should be ������

further classified. Here, we thoroughly investigated the morpho-electric properties and spatial ������

distribution of PVN OXT neurons, and find OXT neurons have at least six subtypes based on ������

their morpho-electric features. Among these six subtypes, only one ������

magnocellular-parvocellular mixed subtype, which are distributed in the posterior PVN ������

subregion, change their activities with different feeding states. Our study uncovers the ������

diversity of PVN OXT neurons and suggests the necessary of subtle neuronal classification. ������

 ������

Introduction  ������

Neuron is the basic unit of central nervous system (CNS). Mammalian brain comprises ������

millions of neurons, which are categorized into diverse subtypes according to their ������

morphological, electrophysiological, and molecular properties. Neuronal diversity determines ������

the functional complexity of the CNS. With the development of transgenic and molecular tools ������

and techniques, more types of neurons in cortex and subcortical regions are gradually ������

uncovered (Saunders et al., 2018; Gouwens et al., 2020). These studies have advanced our ������

understanding about the refined brain structures and the elegant neural networks for ������

controlling our motion, cognition, and emotion. Paraventricular nucleus of hypothalamus ������

(PVN), which is a key center for neuroendocrine and autonomic regulation, consists of ������

several neuropeptide releasing neurons, including oxytocin (OXT), vasopressin (AVP), ������

corticotropin releasing hormone (CRH), and so on. PVN neurons have a broad projection in ������

the brain, and are involved in a lot of innate and learned behaviors (Knobloch et al., 2012; ������

Jirikowski, 2019). To better understand the functions and mechanisms, the diversity of PVN ������
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neurons should be further investigated (Althammer and Grinevich, 2017; Romanov et al., ������

2017; Xu et al., 2020). ������

 ������

Based on the projections and electrophysiological properties, PVN neurons are canonically ������

divided into two subtypes – magnocellular (Magno) and parvocellular (Parvo) (Hoffman et al., ������

1991; Tasker and Dudek, 1991; Luther and Tasker, 2000; Stern, 2001). Magno, but not Parvo, ������

neurons project to the posterior pituitary and release neurohormone into the blood. In ������

electrophysiological properties, Magno neurons exhibit a pronounced transient outward ������

rectification and the A-type potassium current, while Parvo neurons express T-type calcium ������

current (Tasker and Dudek, 1991; Luther and Tasker, 2000). OXT neuron is one main class of ������

PVN neurons. In addition to the well-known projection to posterior pituitary and releasing ������

OXT into blood circulation, PVN OXT neurons also project to many brain regions to modulate ������

prosocial, feeding, maternal, and emotion-related behaviors (Dolen et al., 2013; Marlin et al., ������

2015; Hung et al., 2017; Carcea et al., 2021). Several recent studies assessed the analgesic ������

properties and behavioral role of Parvo OXT neurons in rats and mice (Eliava et al., 2016; ������

Hasan et al., 2019; Lewis et al., 2020; Tang et al., 2020). Most studies about PVN OXT ������

neurons follow the canonical principle to simply classify OXT neurons into Magno and Parvo ������

subtypes (Xiao et al., 2017; Lewis et al., 2020). However, recent studies about both neural ������

circuit function and single-cell RNA sequencing suggested that PVN OXT neurons have more ������

than two subtypes (Althammer and Grinevich, 2017; Romanov et al., 2017).  ������

 ������

Substantial studies suggested the anorexigenic effect of OXT in brain (Sabatier et al., 2013; ������
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Romano et al., 2020). OXT infusion into brain decreased food intake and increased energy ������

expenditure to reduce body weight (Arletti et al., 1989; Deblon et al., 2011; Blevins et al., ������

2015). Food intake will increase the activity of PVN OXT neurons via activation of vagal ������

afferents, which in turn promotes OXT release (Yamashita et al., 2013). However, the role of ������

PVN OXT neurons in regulating feeding behavior remains controversial. Direct ablating PVN ������

OXT neurons in adult mice had no effect on body weight, food intake or energy expenditure ������

on a regular diet (Wu et al., 2012; Xi et al., 2017). Activation of PVN OXT neurons alone in ��������

food-deprived mice had no significant effect on food intake (Atasoy et al., 2012; Sutton et al., ��������

2014), but targeted ipsilateral activation of PVN OXT neurons suppresses the feeding ��������

behavior induced by activating agouti-related peptide (AGRP) neurons in arcuate nucleus ��������

(Atasoy et al., 2012). These studies disrupted or modulated the whole PVN OXTergic system. ��������

Some studies suggested that projection of PVN OXT neurons to nucleus of the solitary tract ��������

(NTS) is responsible for leptin-induced body weight reduction (Perello and Raingo, 2013), ��������

and knockdown of NTS OXT receptors increased food intake (Ong et al., 2017). These ��������

results suggest that a specific subtype of PVN OXT neurons may be responsible for food ��������

intake regulation.  ��������

 ��������

To dissect the diversity of PVN OXT neurons, we combined physiology, morphology, and ��������

clustering analyses. We firstly classified PVN OXT neurons into Magno and Parvo neurons, ��������

following the canonical principle, and thoroughly compared the differences between Magno ��������

and Parvo OXT neurons and along the rostral-caudal axis. With unsupervised clustering ��������

analyses, we find that PVN OXT neurons are classified into at least 6 subtypes based on their ��������
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properties, and one subtype significantly changed their activities with different feeding ��������

conditions.  ��������

 ��������

Materials and Methods ��������

Mouse strains and genotyping. Animals were handled following the protocols approved by ��������

the Fudan University Animal Care and Use Committee. Unless otherwise stated, mice were ��������

housed on a 12:12 light-dark cycle (8 AM light ON and 8 PM light OFF) with ad libitum access ��������

to food and water. Non-breeding male and female mice (postnatal 85-97 days) were used in ��������

this study. B6.129S-Oxt tm1.1(cre)Dolsn/J mice (Oxt-Cre, #024234, Jackson Laboratory) were ��������

used to label oxytocin neurons. The floxed eYFP (Ai3) reporter strain was crossed with ��������

Oxt-Cre mice to visualize PVN OXT neurons. Mouse genotyping was conducted following ��������

standard procedures on the Jackson Lab websites. ��������

 ��������

Behavioral treatment ��������

Before electrophysiology recording, mice were randomly pretreated in 3 different feeding ��������

conditions (Figure 1): normal feeding (Normal), fasting (Fasting), refeeding after fasting ��������

(Refeeding). Mice were single housed in a new cage for 24 h with ad libitum access to food ��������

and water prior to feeding treatment. Then, mice were transferred into a new cage for ��������

different feeding treatments. For Normal group, mice were housed with food and water for 25 ��������

h. For Fasting group, mice were fasted for 25 h. For Refeeding group, mice were provided ��������

with enough food and refed for 1 h after 24 h fasting, and mice were confirmed to consume ��������

the food during the refeeding time. Mice were sacrificed for electrophysiological recording ��������
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around the same time every day.  ��������

 ��������

Acute slice preparation and electrophysiological recording.  Acute brain sections were ��������

prepared from male and female Oxt-Cre: Ai3 mice (postnatal 85-97 days) as previously ��������

described (Xiao et al., 2017, 2018). Briefly, mice were deeply anesthetized by isoflurane, and ������ ��

then transcardially perfused with ice-cold, oxygenated (95% O2 / 5% CO2) artificial ��������

cerebrospinal fluid (ACSF) (in mM): 127 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, ��������

1 MgCl2, and 25 Glucose (Osmolarity ~310 mOsm/L). Brain was quickly removed and placed ��������

into a slicing chamber containing ice-cold ACSF, bubbled with 95% O2 / 5% CO2. Coronal ��������

slices (~ 250 ��m) were cut on a Vibratome 1000PLUS, and slices including PVN region were ��������

collected and incubated in oxygenated ACSF for ~20 min at 34 �rC prior to recording. ��������

 ��������

For electrophysiological recording, a slice was transferred to a recording chamber with ��������

constant perfusion with oxygenated ACSF at a flow rate of 1.5-2 mL/min, with temperature ��������

maintained at ~ 30 �rC during recording by a feedback in-line heater (TC-324C; Warner ��������

Instruments, Hamden, CT). PVN OXT neurons were visualized in slices using an IR/DIC ��������

microscopy, and identified based on the eYFP signal. Current clamp recordings were ��������

established with glass pipettes (3-5 M�) containing the following (in mM): 135 K -gluconate, 4 ��������

KCl, 10 HEPES, 10 Na-phosphocreatine, 4 MgATP, 0.4 Na2GTP, and 1 EGTA (with pH 7.2 – ��������

7.3, and osmolarity ~295 mOsm/L). 0.5% (5 mg/mL) biocytin was added into the internal ��������

solution for morphological detection after recording. PVN OXT neurons with 30 – 40 �—m depth ��������

away from slice surface were recorded and every neuron was recorded ~10 min after ��������
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break-in to make sure the biocytin filling. To minimize the severing of dendritic processes ��������

during the recording, glass pipettes approached the OXT neurons above the soma, but not ��������

laterally. Recordings were made using 700B amplifier, data were digitized at 10 kHz and ��������

filtered at 4 kHz and collected using pCLAMP software (Molecular Devices). ��������

 ��������

Tissue processing, immunohis tochemistry and imaging.  Mice were deeply anesthetized ��������

with isoflurane, and perfused transcardially with 4% paraformaldehyde (PFA) in 0.1 M ��������

phosphate buffered saline (PBS). Brains were post-fixed for 24 h in 4% PFA at 4 �rC, and then ��������

sectioned at 50 ��m on a vibratome (VT1200, Leica, Germany). Tissues including PVN region ��������

were chosen and pretreated in 0.2% Triton-X100 for 1 h at room temperature (RT), then ��������

blocked with 0.05% Triton-X100, 10% bovine serum albumin (BSA) in PBS for 1 h at RT and ��������

rinsed in PBS. Tissues were transferred into primary antibody solution (Rabbit anti-OXT, ��������

1:1000, T-4084, Peninsula Laboratories) in PBS with 0.2% Triton-X100 and incubated for 24 ��������

h at 4 �rC. Tissues were rinsed in PBS for three times, and incubated with secondary antibody ��������

solution (Goat anti-Rabbit 647, 1:800, Life Technologies) in PBS for 2 h at RT, then rinsed ��������

with PBS for three times and mounted onto slides, dried and covered under glycerol:TBS (3:1) ��������

with Hoechst 33342 (1:1000, ThermoFisher Scientific). Sections were imaged with an ��������

Olympus VS120 slide scanning microscope. Confocal images were acquired with a Nikon A1 ������ ��

confocal laser scanning microscope with 25 × objectives. Images were analyzed in ImageJ ��������

(FIJI). ��������

 ��������

Electrophysiological data analyses.  ��������
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Electrophysiological data would be collected when neurons had a persistent stable activity in ��������

3 min after break-in. Three protocols were applied to record neuronal spontaneous activity, ��������

current injection induced firing, and response after relief from hyperpolarization, respectively ��������

(Figure 1B and 1D). Electrophysiological data were analyzed following previous studies ��������

(Stern, 2001; Ekins et al., 2020; Zhang et al., 2021b). For protocol 1, spontaneous firings ��������

were observed in most of recorded neurons excepting only 3 quiescent neurons (3 in 224 ��������

neurons). Neuronal activities recorded in this protocol were used to analyze neuronal ��������

spontaneous firing rate (sFreq), coefficient of variation (CV) of inter-spike-interval, and all the ��������

spike properties. For phasic firing neurons (also called bursting), intra-burst segment was ��������

selected for calculating CV and spike properties.  ��������

 ��������

For analyzing spike properties, neuronal spikes were detected and aligned at spike peak time ��������

and averaged. The 100-ms data around spike peak of averaged spike were taken for phase ��������

plot analysis (membrane potential Vm vs. dVm/dt). According to averaged spike and phase ��������

plot analysis, the following parameters were calculated: spike peak (Peak, the highest ��������

membrane potential), spike threshold (Thre, the membrane potential of the first time dVm/dt ��������

reaching 5 mV/ms), spike amplitude (Amp, the subtraction between spike peak and spike ��������

threshold), half width (HW, the duration between membrane potential shoot over and drop ��������

below half amplitude), depolarizing rate max (DepoR, the maximum value of phase plot on y ��������

axis), repolarizing rate max (RepoR, the minimum value of phase plot on y axis), spike rise ��������

time (RisT, time between 10% and 90% of spike amplitude on depolarizing phase), decay ��������

time (DecT, time between 10% and 90% of spike amplitude on repolarizing phase), AHP ��������
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amplitude (AHPAmp, membrane potential difference between spike threshold and the lowest ��������

potential in the hyperpolarization phase), AHP latency (AHPLat, the time from spike threshold ��������

to the lowest potential of spike), depolarization after hyperpolarization (ADP) occurrence ��������

(ADPOcc, the probability of ADP occurred during spontaneous firing), and ADP amplitude ��������

(ADPAmp, the membrane potential difference between AHP trough and ADP peak).  ��������

 ��������

For protocol 2, currents were injected into neurons with 10 pA increments and 250 ms interval, ��������

and current injected in the first sweep was -100 pA. As neurons have spontaneous activity, ��������

averaged membrane potential in the steady-state with -20 pA current injected was ��������

approximately considered as resting membrane potential (RMP, mV). Input resistance (Rin, ��������

M� ) was determined according to averaged membrane potential in the steady-state of -20 pA ��������

and -100 pA. The initial 30 ms voltage response with -100 pA current injection was fitted with ��������

a single exponential curve and membrane time constant (Tau, ms) was obtained. Membrane ��������

capacitance (Capa, pF) was calculated by Capa = Tau / Rin.  ��������

 ��������

For protocol 3, neurons were firstly injected with a negative current (based on the results from ��������

protocol 2) to make membrane potential hyperpolarize to -100 mV for 250 ms, and then ��������

re-depolarized with a 250-ms current injection from -30 pA to 65 pA with 5 pA increments. The ��������

latency from hyperpolarization relief to the time of the earliest spike fired among all sweeps ��������

was defined as the spike latency (SpkL, ms). The first and second inter-spike-interval after ��������

relief from hyperpolarization were defined as interval1 (ISI1, ms) and interval2, respectively. ��������

Adaption index (AdpI) was defined as (ISI1-ISI2)/ISI1.  ��������
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 ��������

Morphological data analyses. ��������

After electrophysiological recording, acute slices were fixed in 4% PFA at 4 �rC���L�U�X���G�Z���R�K�G�Y�Z����������������

�N, and subsequently were immunostained with Alexa Fluor® 488 Streptavidin (1:800, ��������

016-540-084, Jackson ImmunoResearch Inc) to visualize the morphology of recorded ��������

neurons. The confocal and VS120 images were used for morphology reconstruction and ��������

spatial location identification, respectively (Figure 1B-1D). Neuronal processes and soma ��������

were manually reconstructed using Neurolucida (MBF Bioscience), and morphological ��������

features were extracted and analyzed by Neurolucida Explorer (MBF Bioscience). Total 7 ��������

morphological parameters were measured (Sholl, 1953; Li et al., 2018; Ekins et al., 2020) ��������

(Figure 1B and 1D), including soma area (SomaA, the area of cell body after projection along ��������

z axis), primary dendrites number (DenN, the number of dendrites originating from the cell ��������

body), node number (NodeN), dendritic ending number (EndN), total dendritic length (TDL), ��������

mean dendritic length (MDL, the average length of every primary dendrites), and process ��������

area (also called convex hull area, HullA, the area of convex hull of dendrites after z ��������

projection). Sholl analysis measured the intersections between a series of soma centre ��������

circles with 10 ��m radius increments and neuronal dendrites. The polar histogram was ��������

defined as the normalized dendritic length in every direction, and was used to analyze the ��������

distribution of dendrites in different directions. ����������

 ��������

To characterize the spatial location of recorded OXT neurons in PVN, a serial 50-��m-thick ��������

slices of whole PVN from Oxt-Cre; Ai3 mouse strain were imaged with Olympus VS120 slide ��������
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scanning microscope as the atlas of PVN OXT neurons. In combination with the confocal ��������

images, microscope images of biocytin labeled neurons, the atlas of PVN OXT neurons, and ��������

the Paxinos adult mouse brain atlas, neurons recorded in this study were manually mapped ��������

onto six rostral-caudal parts of PVN (-0.58 mm, -0.70 mm, -0.82 mm, -0.94 mm, -1.06 mm, ��������

-1.22 mm away from bregma), and the distribution of OXT neurons in seven PVN ��������

subdivisions (PaAP, PaMM, PaV, PaLM, PaDC, PaMP, and PaPo) was determined according ��������

to the Paxinos adult mouse brain atlas.  ��������

 ��������

Correlation and clustering analyses. ��������

The 29 morpho-electric parameters we calculated as described above were used for ��������

analyzing the correlations between different parameters and neuronal clustering. Neurons ��������

were excluded if any of morpho-electric parameters was lacked, and 203/224 neurons were ��������

included for correlation and clustering analyses. Pearson correlation coefficient between ��������

every 2 parameters were calculated. The Pearson correlation coefficient matrix was ��������

demonstrated by a heatmap and significant level of correlation was indicated by circle size, ��������

and level of significance less than 0.05 was reported.  ��������

 ��������

All morpho-electric properties were z-scored to center data and eliminate the difference of ��������

scale before clustering. Unsupervised hierarchical clustering was based on cosine distances ��������

and the average method. Z-scored data was used to plot heatmap and distance matrix was ��������

used to compute dendrogram in MATLAB (Mathworks). Total 203/224 neurons were included ��������

in the clustering analysis, and classified into 3 main types with the hierarchical clustering ��������
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trees cutoff at the height of 0.9 (The largest cluster distance is 1.2). Each main type was ��������

further divided into 2 subtypes. Two-dimensional the Uniform Manifold Approximation and ��������

Projection (UMAP) plot based on the principal components of morpho-electric properties was ��������

used to visualize the distribution of different subtypes (Becht et al., 2019). ��������

 ��������

Quantification and Statistical Analysis.  All electrophysiological data analyses were ��������

performed using MATLAB (Mathworks), pClamp10 (Molecular Devices), or GraphPad Prism ��������

(GraphPad). Image analyses were carried out in Imaris (Oxford Instruments), Neurolucida ��������

Explorer (MBF Bioscience), and ImageJ (FIJI, NIH). Whenever possible, data were analyzed ��������

blind to condition. The number of neurons recorded and the number of animals used in every ��������

experiment are provided in figure legends. Group data are expressed as means ± SEM. ��������

Normality was tested using D’Agostino and Pearson omnibus normality test. For two group ��������

comparisons, statistical significance was determined by two-tailed paired or unpaired ��������

Student’s t-tests, or Wilcoxon Signed-Rank test or Mann-Whitney test when assumptions for ��������

parametric testing were not satisfied. For multiple group comparisons, one-way analysis of ��������

variance (ANOVA) tests was used for normally distributed data, followed by post hoc ��������

analyses. For data that were not normally distributed, non-parametric tests for the appropriate ��������

group types were used instead. p < 0.05 was considered statistically significant. ��������

 ��������

Results ��������

1. Distinct electrophysiological propert ies between PVN Magno and Parvo OXT ��������

neurons  ��������
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To specifically investigate the properties of PVN OXT neurons, our experiments were ��������

conducted with non-breeding male and female Oxt-Cre; Ai3 transgenic mice (postnatal 85-97 ��������

days). The reliability and efficiency of Oxt-Cre; Ai3 mice were confirmed with OXT ������ ��

immunostaining (Figure 1A), and we observed that more than 86% eYFP+ neurons were OXT ��������

immunopositive (86.05%, 870/1011 eYFP+ neurons from 2 mice) and more than 89% OXT ��������

immunopositive neurons were eYFP+ (89.51%, 870/972 OXT immunopositive neurons from 2 ��������

mice) (Figure 1A). With the eYFP signal to identify PVN OXT neurons, we conducted ������ ��

electrophysiological recording in current clamp mode, and the physiological and ��������

morphological properties of OXT neurons were measured after recording as described in the ��������

Materials and Methods (Figure 1B-1D). We totally recorded 235 PVN OXT neurons, and ��������

224/235 neurons from 23 mice have good electrophysiological properties and were included ��������

for the analyses in this study.  ��������

 ��������

OXT neurons are traditionally classified into magnocellular (Magno) and parvocellular (Parvo) ��������

subtypes based on the transient outward rectification and latency to spike following relief from ��������

hyperpolarization (Luther and Tasker, 2000; Eliava et al., 2016; Xiao et al., 2017; Lewis et al., ��������

2020). We defined the minimum depolarizing rate of membrane potential before the first spike ��������

generation during depolarization as the rectified depolarizing rate. As shown in Figure 2A and ��������

2B, PVN OXT neurons are clearly separated into Magno and Parvo subtypes with the ��������

rectified depolarizing rate cutoff at ~0.4. In general, Magno neurons have a longer spike ��������

latency than Parvo neurons (Magno latency: 83.27 �s 2.58 ms, n = 156 neurons; Parvo ��������

latency: 23.63 ± 1.01 ms, n = 68 neurons. p < 0.0001, Mann-Whitney test. Figure 2C), though ��������
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a few Magno OXT neurons exhibit a short latency to spike (the proportion of neurons with ��������

spike latency less than 50 ms is 8.97%, Figure 2B). The ratio of Magno OXT neurons and ��������

Parvo OXT neurons we recorded is 2.29:1, which is consistent with the previous study ��������

detected based on Fluo-Gold tracing (Lewis et al., 2020). In addition to the spike latency, ��������

Magno and Parvo OXT neurons have different inter-spike interval (ISI) patterns for spikes ��������

following relief from hyperpolarization as shown in Figure 2D. Compared with Magno neurons, ��������

Parvo OXT neurons have a larger first ISI (Interval1) and adaptation index (Figure 2D).  ��������

 ��������

Both spontaneous activity and different current injection induced activity were recorded and ��������

analyzed as shown in Figure 1D. PVN OXT neurons we recorded exhibited four types of ��������

spontaneous activity according to coefficient of variance (CV) (Figure 2E): regular firing, with ��������

CV no more than 0.5 (73.66 %, 165 in 224 neurons); irregular firing, with CV more than 0.5 ��������

(22.32 %, 50 in 224 neurons); phasic firing, with bursting observed during firing (2.68 %, 6 in ��������

224 neurons); and another 3 quiescent neurons. The CV in Magno neurons is significantly ��������

larger than that in Parvo neurons (Figure 2F), which is consistent with more Magno neurons ��������

exhibiting irregular firing mode (26.92 % for Magno neurons, 42 in 156 neurons; 11.76% for ��������

Parvo neurons, 8 in 68 neurons). Though spontaneous firing rate, resting membrane potential, ��������

and membrane time constant are similar between Magno and Parvo neurons (Figure 2G-I), ��������

Magno OXT neurons have a higher input resistance and a lower membrane capacitance than ��������

Parvo neurons (Figure 2J-K). In line with the higher input resistance, positive current injection ��������

induced more action potentials in Magno OXT neurons than Parvo neurons (Figure 2L).  ��������

 ��������
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Since the expression levels of potassium and calcium-related channels in Magno and Parvo ��������

neurons are different (Lewis et al., 2020), and voltage-gated ion channel expressions ��������

determine action potential properties, we analyzed the differences of spike properties ��������

between Magno and Parvo neurons. Only neurons with spontaneous firing activity were ��������

included for analyzing spike properties, and 12 spike-related parameters were calculated ��������

(Figure 2M, see Materials and Methods). Spike threshold is similar between Magno neurons ��������

and Parvo OXT neurons (Figure 2N), but Parvo neurons have a significantly larger spike ��������

amplitude than Magno neurons (Figure 2O). Although spike rise time and spike peak values ��������

do not show significant distinctions between Magno and Parvo neurons, the Magno neurons ��������

have a longer spike decay time (Figure 2P-Q). Meanwhile, Magno neurons have smaller ��������

maximum depolarizing rate and repolarizing rate (Figure 2R-S), which are consistent with a ��������

larger spike half width observed in Magno neurons (Figure 2T). After-hyperpolarization (AHP) ��������

occurs because some delayed rectifiers are still open and the membrane is therefore more ��������

permeable to potassium. For PVN OXT neurons, Magno subtype has a larger AHP than ��������

Parvo neurons (Figure 2U). An after-depolarization (ADP) after the termination of a single ��������

spike, which is related to the T-type calcium channel (Jung et al., 2001; Deleuze et al., 2012), ��������

was observed in some OXT neurons (Figure 2M). Parvo neurons have a higher probability to ��������

generate an ADP following an action potential, but the amplitude of ADP in Magno and Parvo ��������

neurons is not significantly different (Figure 2V).  ��������

 ��������

2. Parvo OXT neurons have more complicated morphology than Magno neurons  ��������

Since biocytin was loaded into OXT neurons during electrophysiological recording, ��������
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morphology properties of PVN OXT neurons were analyzed. Only the neurons with good ��������

break-in and electrophysiological properties were considered for morphology analyses. ��������

Neuronal morphologies were reconstructed in Neurolucida based on a digitized image stack ��������

after staining and imaging, and 7 morphology properties, Sholl analysis, and polar histogram ��������

were measured with Neurolucida explorer as shown in Figure 1 (see Materials and Methods). ��������

Total 213/224 neurons from 23 mice (156 Magno neurons and 57 Parvo neurons) were ��������

included in the morphology analyses, and 11/224 neuronal morphologies were destroyed or ��������

not found after electrophysiological recording. Reconstructed morphology and spatial ��������

distribution of OXT neurons we recorded are shown in Figure 3A.  ��������

 ��������

Though previous studies suggested that Magno OXT neurons in rats have larger soma than ��������

Parvo OXT neurons (Eliava et al., 2016), we did not observe significant difference in soma ��������

area between these two types of neurons (Figure 3B). However, we found that Parvo OXT ��������

neurons have more primary dendrites (Figure 3C), longer total and mean dendritic length ��������

(Figure 3D-E), more dendritic nodes (Figure 3F), more dendritic endings (Figure 3G), and ��������

more process area (Figure 3H) than Magno neurons. Consistently, in the Sholl analysis ��������

(Figure 3I), more intersections and longer dendritic length per 10 ��m window from soma were ��������

observed in Parvo neurons (Figure 3J-K). Together, these results indicate that compared with ��������

Magno neurons, the morphology of Parvo OXT neurons is more complex. ��������

 ��������

As both male and female mice were used in this study, we separately investigated the gender ��������

difference of electrophysiological and morphological features of PVN Magno (Table 1) and ��������
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Parvo (Table 2) OXT neurons. For both Magno and Parvo OXT neurons, no significant ��������

differences were observed between male and female in most of features, except that ��������

dendritic branch node was more observed in male Magno neurons (Table 1) and male Parvo ��������

OXT neurons have significantly larger input resistance (Table 2). Meanwhile, the relative ��������

proportion of Parvo and Magno OXT neurons we randomly recorded in this study is higher in ��������

males (1:1.97) than in females (1:2.64). Therefore, though PVN Magno and Parvo OXT ��������

neurons exhibit sex-difference in sporadic morpho-electrical properties, most features of PVN ��������

OXT neurons are largely similar between male and female mice. ��������

 ������ ��

3. Morpho-electric properties are correlated in Magno and Parvo neurons ��������

As shown in Figure 2 and Figure 3, we totally analyzed 29 morpho-electric features of PVN ��������

OXT neurons. We further investigated whether different neuronal properties are correlated, ��������

especially between morphological and physiological properties. The paired correlations ��������

between morpho-electric features in Magno and Parvo OXT neurons were separately ��������

calculated, and the results are shown in Figure 4A.  ��������

 ��������

Similar correlation patterns were exhibited in the Magno and Parvo subtypes (Figure 4A). ��������

Strong positive or negative correlations were observed within physiological properties or ��������

morphological properties, including spike half width vs. spike decay time (Figure 4B), spike ��������

amplitude vs. spike maximum repolarization rate (Figure 4C), total dendritic length vs. ��������

process area (Figure 4D), and mean dendritic length vs. dendritic node number (Figure 4E). ������ ��

In addition, significant correlation was also observed between some physiological properties ��������
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and morphological properties, such as total dendritic length vs. repolarization rate maximum ��������

(Figure 4F), total dendritic length vs. membrane capacitance (Figure 4G).  ��������

 ��������

Meanwhile, although most of morpho-electric features exhibited similar correlations in Magno ������ ��

and Parvo neurons (Figure 4A), significant correlations between some properties were only ��������

observed in either Magno neurons or Parvo neurons. For example, correlations between ��������

spike threshold and spike decay time (Figure 4H), spontaneous firing rate and spike rise time ��������

(Figure 4I), are only significant in Parvo OXT neurons. However, the correlations between ��������

input resistance and membrane time constant (Figure 4J), mean dendritic length and decay ��������

time (Figure 4K), are only significant in Magno OXT neurons.  ��������

 ��������

4. Change of PVN OXT neuronal properties along the rostral-caudal axis ��������

As the mapping results shown in Figure 3A, morphologies of OXT neurons tend to become ��������

more complex along the rostral-caudal axis, so we further investigated the properties of OXT ��������

neurons in the rostral-caudal axis. We divided PVN into six rostral-caudal parts according to ��������

the mouse brain atlas (Figure 3A). Consistent with previous study (Lewis et al., 2020), more ��������

Magno neurons we recorded are distributed in the PVN rostral division, while most of Parvo ��������

neurons are localized in the PVN caudal division (Figure 5A), but the soma size of PVN OXT ��������

neurons does not show significant change along the rostral-caudal axis (Figure 5B). ��������

Morphological properties, including primary dendrites number (Figure 5C), dendritic endings ��������

(Figure 5D), branch nodes (Figure 5E), total and mean dendritic length (Figure 5F-G), and ��������

process area (Figure 5H), are monotonically increased along the rostral-caudal axis, which ��������
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confirm the morphology of PVN OXT neurons becomes more complex. Since PVN is ��������

adjacent to the third ventricle, we analyzed the polarization of OXT neurons. As shown in ��������

Figure 5I, dendrite distributions in PVN OXT neurons are asymmetric, and most of dendrites ��������

radiate toward or along the third ventricle, consistent with previous observation in PVN ��������

neurons (Van Den Pol, 1982). Meanwhile, neuronal dendrites covering region is becoming ��������

narrower along the rostral-caudal axis (Figure 5I), which suggests that OXT neuronal ��������

dendrites are mostly constraint in PVN region.  ��������

 ��������

The changes of physiological properties along the rostral-caudal axis were also analyzed ��������

(Figure 6). The latency of the first spike following relief from hyperpolarization becomes ��������

shorter along the rostral-caudal axis (Figure 6A), which is consistent with the biased ��������

distribution of Magno and Parvo neurons (Figure 5A). The Interval1 (Figure 6B) and ��������

adaptation index (Figure 6C) for spikes following relief from hyperpolarization are ��������

monotonically increased along the rostral-caudal axis. The spontaneous activity and input ��������

resistance are significantly reduced along the rostral-caudal axis (Figure 6D-E), and ��������

membrane capacitance has a reverse change (Figure 6F), but the coefficient of variance, ��������

resting membrane potential, and membrane time constant of spontaneous firing do not show ��������

monotonical change (Figure 6G-I). The changes of spike properties exhibit multiple change ��������

patterns along the rostral-caudal axis, including spike amplitude and ADP occurrence ��������

probability are monotonically increased (Figure 6J-K), AHP amplitude is monotonically ��������

decreased (Figure 6L), and spike threshold, spike peak, spike rise time and decay time, spike ��������

half width, maximum depolarizing and repolarizing rates, AHP latency, and ADP amplitude ��������
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exhibit U-shape or inverted U-shape change (Figure 6M-T). These results indicate that ��������

morphological properties mainly exhibit monotonical change, similar as the biased distribution ��������

of Magno and Parvo neurons in the PVN, but the physiological properties of PVN OXT ��������

neurons exhibit various variations along the rostral-caudal axis.  ��������

 ��������

Since morpho-electric properties of PVN OXT neurons exhibit diverse spatial change ��������

patterns (Figures 5 and 6) and Magno neurons are distributed across PVN subregions, we ��������

further investigated the changes of Magno neuronal properties across the rostral-caudal axis. ��������

We defined the three PVN parts close to bregma (-0.58 mm, -0.70 mm, -0.82mm) as the ��������

rostral region, and the other three parts (-0.94 mm, -1.06 mm, -1.22 mm) as the caudal region. ��������

Only three Parvo neurons we identified are localized in the rostral region (Figure 3A), so we ��������

did not compare the properties of Parvo neurons in rostral and caudal regions. Parvo, rostral ��������

Magno, and caudal Magno OXT neurons have similar soma sizes (Figure 7A). However, the ��������

other morphological features, including primary dendrites number, dendritic node number and ��������

ending number, total and mean dendritic length, and process area exhibit significantly ��������

different among Parvo OXT neurons, the rostral and caudal Magno neurons (Figure 7B-G). ��������

Compared with the rostral Magno OXT neurons, morphological properties of caudal Magno ��������

neurons are close to the properties of Parvo OXT neurons (Figure 7). ��������

 ��������

For physiological properties, several features of the caudal Magno neurons are close to the ��������

rostral Magno neurons, including spike latency (Figure 8A), the Interval1 (Figure 8B) and ��������

adaptation index (Figure 8C) for spikes following relief from hyperpolarization, coefficient of ��������
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variance (Figure 8G), and spike decay time (Figure 8O). On the contrary, some physiological ��������

properties of caudal Magno neurons are more identical to Parvo neurons, but not to the ��������

rostral Magno neurons, including spontaneous firing rate (Figure 8D), input resistance (Figure ��������

8E), membrane capacitance (Figure 8F), ADP occurrence (Figure 8K), spike half width ��������

(Figure 8P), and maximum depolarizing and repolarizing rates (Figure 8Q-R). At the same ��������

time, other physiological properties of caudal Magno neurons are similar to both Parvo and ��������

rostral Magno OXT neurons (Figure 8), such as resting membrane potential (Figure 8H), ��������

membrane time constant (Figure 8I), spike amplitude (Figure 8J), spike threshold (Figure 8M), ��������

spike peak (Figure 8N), AHP latency and amplitude (Figure 8L and 8S), and ADP amplitude ��������

(Figure 8T). Together, these results suggest that rostral and caudal Magno OXT neurons ��������

have commonality and individuality, so they should be classified into different subgroups.   ��������

 ��������

5. PVN OXT neurons are classified into at le ast 6 subtypes based on morpho-electric ��������

properties ��������

The diverse variations of morpho-electric properties along the rostral-caudal axis as shown in ��������

Figures 5, 6, 7 and 8 suggest that PVN OXT neurons can be classified into more than two ��������

types. Hence, total 29 morpho-electric features measured from 203/224 PVN neurons in 23 ��������

mice were z-scored to standardize the scale and used for the unsupervised classification ��������

(see Materials and Methods).  ��������

 ��������

As shown in Figure 9A and 9B, PVN neurons were categorized into 3 major types (ME-1, ��������

ME-2, and ME-3), and each type was further classified into 2 subtypes as described in ��������
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Materials and Methods. ME-1a, ME-1b, and ME-2b are mainly composed of Magno neurons ��������

(92.31% in 26 neurons for ME-1a, 97.44% in 39 neurons for ME-1b, 96.23% in 53 neurons for ��������

ME-2b), ME-2a and ME-3a are mainly composed of Parvo neurons (70.59% in 17 neurons for ��������

ME-2a, 75.00% in 12 neurons for ME-3a), and ME-3b include both Magno and Parvo neurons ��������

(55.36% in 56 neurons for ME-3b are Parvo) (Figure 9A). As shown in Figure 9C, these 6 ��������

subtypes are differently distributed along the rostral-caudal PVN axis. Morphology and ��������

electrical response from example neurons in each subgroup are shown in Figure 9D-9I. PVN ��������

OXT neurons in ME-1a and ME-1b have simple morphology and also similar spike properties, ��������

but the coefficient of variance (CV) of spontaneous activity is higher in ME-1a than in ME-1b ��������

(Figure 9A). OXT neurons in ME-2a and ME-2b subgroups share several common ��������

physiological properties differing from the other 4 subgroups, such as higher spontaneous ��������

frequency, higher membrane potential, and longer spike rise time and decay time (Figure 9A). ��������

Neurons in ME-2a and ME-2b respectively belong to Parvo and Magno neurons and they ��������

have different morphological properties (Figure 9A, 9F, and 9G). ME-3a and ME-3b neurons ��������

have similar morphological properties, but OXT neurons in ME-3b have larger spike ��������

amplitude, ADP amplitude, and AHP amplitude (Figure 9A, 9H, and 9I). The distribution of ��������

different subtypes in PVN subdivision is also investigated, and we observed that most of ��������

neurons in ME-3b (83.64%) are located at posterior part of PVN (PaPo), but the other 5 ��������

subtypes contain neurons from multiple PVN subdivisions (Figure 9A).  ��������

 ��������

6. Firing activities of ME-3 OXT neurons are changed in different feeding conditions ��������

Oxytocin acts as an anorexigenic factor in controlling food intake, but the effect of PVN OXT ��������
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neurons on feeding behavior remains controversial (Sabatier et al., 2013; Romano et al., ��������

2020). We investigated the change of PVN OXT neuronal activity from mice in three feeding ��������

states: normal feeding, 25 h fasting, and refeeding 1 h after 24 h fasting (Figure 1B). ��������

Spontaneous activities did not significantly change in different feeding states when ��������

considering all the recorded PVN OXT neurons together (FR in Normal: 5.945 ± 0.4037 Hz ��������

from 74 neurons; FR in Fasting: 6.195 ± 0.4165 Hz from 68 neurons; FR in Refeeding: 6.994 ��������

± 0.4344 Hz from 80 neurons. p = 0.1736, Kruskal-Wallis test). We also did not observe ��������

significant firing rate change in different feeding states if PVN OXT neurons were simply ��������

divided into Magno and Parvo neurons (Figure 10A). However, after unsupervised clustering ��������

analysis (Figure 9), the firing activities of ME-3 OXT neurons, but not ME-1 or ME-2 ��������

subgroups, were significantly changed in different feeding states (FR in Normal: 4.489 ± ��������

0.4311 Hz from 28 neurons; FR in Fasting: 4.242 ± 0.5020 Hz from 22 neurons; FR in ��������

Refeeding: 5.966 ± 0.5645 Hz from 17 neurons. p < 0.05, Kruskal-Wallis test), especially the ��������

firing rate at refeeding condition was higher than that at fasting condition (Figure 10B). Since ��������

neurons in ME-3 were further classified into ME-3a and ME-3b, only OXT neurons in ME-3b, ��������

but not ME-3a, exhibited firing rate change with different feeding conditions (Figure 10C).  ��������

 ��������

OXT neurons in ME-3 are distributed in the posterior PVN (Figure 9C), especially in the PaPo ��������

subregion (~79.10% ME-3 neurons in the PaPo, Figure 9A, 10D, and 10E), and most of OXT ��������

neurons (80.30% in 66 PaPo OXT neurons) we recorded in the PaPo belong to the ME-3 ��������

group. ME-3 neurons can be subdivided into ME-3a and ME-3b (12 neurons for ME-3a, 56 ��������

neurons for ME-3b). ME-3b, the only subtype showing activity changing in different feeding ��������
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conditions, is composed of both Magno and Parvo neurons (25 neurons for Magno, 31 ��������

neurons for Parvo) (Figure 10D and 10E). We then further compared the morpho-electric ��������

properties of ME-3b neurons with other subtypes. ME-3b neurons have more complex ��������

morphology than the other 5 subtypes, including longer total dendritic length (Figure 10F). ��������

ME-3b neurons also show differences in some electrophysiological properties, such as ��������

shorter spike decay time (Figure 10G), higher probability of ADP occurrence (Figure 10H), ��������

and larger membrane capacitance (Figure 10I). Furthermore, soma size of ME-3b neurons is ��������

significantly larger than that of ME-2a and ME-3a, which both are mainly compose of Parvo ��������

neurons, while similar to that of ME-1a, ME-1b, ME-2b, which are mainly compose of Magno ��������

neurons (Figure 10J). Meanwhile, the soma size of Magno and Parvo OXT neurons in ME-3b ��������

is similar (Magno: 129.8 ± 7.33 ��m2; Parvo: 135.9 ± 5.95 ��m2. n = 31 and 25 for Magno and ��������

Parvo neurons, p = 0.3967, Mann-Whitney test), and some Parvo neurons have a large soma ��������

area (Figure 10J). Therefore, OXT neurons in ME-3b are different from the other subtypes, ��������

and may be responsible for regulating food intake behavior. ��������

 ��������

Discussion ��������

OXT is involved in multiple functions, and plays pivotal roles in every stage of our life (Lee et ��������

al., 2009). Neural function and transcription studies have suggested the diversity of PVN OXT ��������

neurons, but the morpho-electric properties and diversity of PVN OXT neurons are not fully ��������

investigated. In this study, we systematically characterize PVN OXT neuronal morpho-electric ��������

properties and rostral-caudal location distributions, and find that PVN OXT neurons are ��������

classified into at least six subtypes according to their morpho-electric properties (Figure 11). ��������
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Neither the ensemble activity of PVN OXT neurons nor the activity of Magno and Parvo OXT ��������

neurons shows significant difference for mice pretreated in different feeding conditions, but a ��������

clustering subgroup with Magno-Parvo mixed neurons in PaPo exhibit significant firing rate ��������

change (Figure 11). Therefore, PVN OXT neurons are diverse, and subtle classification of ��������

PVN OXT neurons will advance our investigation about the functions of oxytocinergic ��������

systems. ��������

 ��������

Similar as previous reports about PVN Parvo and Magno neurons (Luther and Tasker, 2000; ��������

Stern, 2001; Luther et al., 2002), PVN Parvo and Magno OXT neurons exhibit a lot of ��������

distinctions in both physiological and morphological properties. Though PVN Magno neurons ��������

are traditionally suggested to have a larger soma than Parvo neurons, we did not observe ��������

obvious difference of soma size of PVN OXT Parvo and Magno neurons in mice. Three ��������

possibilities may cause this contradicting result. Firstly, patch-clamp recording may disrupt or ��������

distort cell membrane and induce the biased estimation of soma size. During patch recording, ��������

neurons could shrink/collapse and even subtle differences in cell volume could affect ��������

subsequent soma size assessment. Secondly, species differences may also contribute to this ��������

contradicting result.��Species differences in PVN organization and OXTergic signal have been ��������

reported (Insel et al., 1997; Kádár et al., 2010). Previous studies about soma size of PVN ��������

Magno and Parvo neurons were conducted in rats (Sawchenko and Swanson, 1982; Hoffman ��������

et al., 1991; Eliava et al., 2016), but few studies directly investigated the soma size difference ��������

of these two types in mice. Thirdly, after further clustering classification, we observed that ��������

Magno-dominated subgroups, including ME-1a, ME-1b, and ME-2b, have larger soma size ������ ��
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than Parvo-dominated ME-2a and ME-3a subgroups, but Parvo OXT neurons in the ME-3b ��������

have similar cell body as the Magno neurons (Figure 10), and this distinctive subgroup may ��������

also cause the contradicting result about soma size. Our study finds that PVN Parvo OXT ��������

neurons have more dendrites, and PVN Magno OXT neurons have a wider action potential, ��������

induced by the longer spike decay time but not spike rise time, which are consistent with the ��������

properties of PVN Parvo and Magno neurons (Stern, 2001; Luther et al., 2002; Lewis et al., ��������

2020). The repolarization phase of action potential is mainly determined by the voltage-gated ��������

potassium channels, indicating that Magno and Parvo OXT neurons have distinct ��������

voltage-gated potassium channels expression (Luther and Tasker, 2000; Lewis et al., 2020). ��������

In rat PVN, Magno and Parvo OXT neurons are suggested to have similar input resistance ��������

(Luther and Tasker, 2000), but an electrophysiology study about rat PVN pre-autonomic ��������

neurons found that one type of PVN neurons with shorter dendritic length have a significantly ��������

higher input resistance (Stern, 2001). In this study, mouse PVN Magno OXT neurons have a ��������

larger input resistance and they will fire more action potentials with positive current injection ��������

than Parvo OXT neurons. These indicate that PVN Magno OXT neurons may be easier to be ��������

excited to fire more spikes, which is necessary for OXT neurons to release OXT (Wakerley ��������

and Lincoln, 1972; Knobloch et al., 2012). ��������

 ��������

We analyzed the correlation between physiological and morphological properties of PVN ��������

OXT neurons. In addition to strong correlation within physiological properties or ��������

morphological properties, dendritic properties of OXT neurons are also correlated with spike ��������

properties and membrane resistance (Figure 4), suggesting that the morphology of OXT ��������
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neurons may influence neuronal physiological properties. Neurons integrate synaptic inputs ��������

via dendrites and dendritic properties play important roles in regulating neuronal firing ��������

patterns and neural excitability (van Elburg and van Ooyen, 2010; Zhu et al., 2016). In ��������

hippocampus, minor alterations of dendritic bifurcations of CA1 pyramidal neurons would ��������

have effects on the features of action potentials (Ferrante et al., 2013). Neuronal input ��������

resistance in PVN neurons was suggested to reflect the total neuronal surface area and ��������

membrane sensitivity (Stern, 2001), and PVN OXT neurons also obey this rule. Therefore, ��������

more complex dendritic features of Parvo OXT neurons may be one of the factors to induce ��������

distinct synaptic integration and spike properties from Magno OXT neurons. ��������

  ��������

In many brain regions, neuronal properties, including morphology, physiology, and molecular ��������

expression, are reported to show gradient change along the anatomical structure (Milior et al., ��������

2016; Berns et al., 2018; Holley et al., 2018). We found that OXT neurons in PVN are also not ��������

homogeneous along the rostral-caudal axis. Similar as previously reported (Lewis et al., ��������

2020), Magno OXT neurons are more distributed in the rostral PVN and Parvo OXT neurons ��������

are located at the caudal part. Until now, few studies reported the changes of morpho-electric ��������

properties of PVN neurons along the rostral-caudal axis. Our study found that morphological ��������

and electrophysiological features of PVN OXT neurons have diverse change ways along the ��������

rostral-caudal axis, including some exhibiting monotonic increase or decrease, some showing ��������

U-shape or inverted U-shape change, and several properties displaying no change (Figure 5 ��������

and Figure 6). In addition to the morpho-electric properties, rostral and caudal PVN OXT ��������

neurons exhibit different neural circuit projections and functions, i.e., rostral PVN OXT ��������
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neurons project more to the forebrain to regulate social-related behavior and locomotion ��������

(Zhang et al., 2021a), and caudal neurons have more projections to the hindbrain and ��������

brainstem to control feeding and nociception (Blevins et al., 2004; Eliava et al., 2016). ��������

Molecular expression is required to screen to understand the mechanisms underlying these ��������

diverse properties changes along the rostral-caudal axis.  ��������

 ��������

The role of PVN OXT neurons in regulating food intake is controversial (Atasoy et al., 2012; ��������

Wu et al., 2012; Sabatier et al., 2013; Sutton et al., 2014). In this study, we directly recorded ��������

the spontaneous activity of PVN OXT neurons when mice were pretreated in different feeding ��������

conditions. Unexpectedly, we did not observe significant difference when considering PVN ��������

OXT neurons as a whole, or simply classified into Magno and Parvo neurons, but one ��������

subtype of PVN OXT neurons ME-3b, identified by the unsupervised clustering and mainly ��������

distributed in the PaPo subregion, is relevant with feeding behavior. The firing rate of ME-3b ��������

was increased after refeeding, indicating more OXT is released to terminate feeding, which is ��������

consistent with the anorexic role of OXT (Onaka and Takayanagi, 2019). Modulating PVN ��������

OXT neurons alone did not significantly change the food intake behavior (Atasoy et al., 2012; ��������

Sutton et al., 2014), but OXT neurons in the posterior PVN (PaPo subregion) projecting to the ��������

NTS are suggested to regulate energy homeostasis (Uchoa et al., 2009; Ong et al., 2017). ��������

Previous tracing studies found that rat neurons in PaPo region project more to the brainstem ��������

and spinal cord (Swanson and Kuypers, 1980; Sawchenko and Swanson, 1982). Combining ��������

retrograde circuit tracing and chemogenetic/optogenetic tools may specifically target the ��������

NTS-projecting OXT neurons in the PaPo to investigate the function of ME-3b neurons in ��������
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feeding behavior. Recent studies in rats showed that PVN Parvo OXT neurons project to both ��������

the Magno OXT neurons in the SON and neurons in the deep layers of the spinal cord to ��������

encode contextual fear memory and promote analgesia (Eliava et al., 2016; Hasan et al., ��������

2019), and social touch information converge to Parvo OXT neurons and then Parvo OXT ��������

neurons communicate with Magno OXT neurons to support motivated social communication ��������

(Tang et al., 2020). Magno and Parvo OXT neurons in ME-3b may also coordinate with each ��������

other to regulate social and pain-related behaviors. Hence, it’s necessary to redefine ��������

subtypes of PVN OXT neurons to sophisticatedly investigate the functions of OXTergic ��������

system (Althammer and Grinevich, 2017). ��������

 ��������

In this study, we investigated the diversity of OXT neurons only based on the morpho-electric ��������

properties, but did not screen their gene expression. In recent years, several studies ��������

uncovered the diversity of OXT neurons by PVN single-cell RNA sequencing, and at least ��������

four subtypes of OXT neurons have been identified (Romanov et al., 2017), however they did ��������

not have neuronal morpho-electric features and spatial information. In mouse cortex, ��������

morpho-electric features of GABAergic interneurons co-vary with the transcriptomic types, ��������

and classification based on morpho-electric features is largely consistent with transcriptomic ��������

types (Gouwens et al., 2020). In the previous study, only 37 Oxt positive neurons were ��������

identified for transcriptomic classification, and the small sample size may limit the subtypes ��������

screening (Romanov et al., 2017). It will advance our understanding about OXTergic system ��������

when we conduct single-cell patch-seq (Lipovsek et al., 2021), similar as the research in ��������

cerebral cortex (Cadwell et al., 2016; Gouwens et al., 2020).  ��������
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Figure Legends ��������

 ��������

Figure 1. Experimental and data analyses procedures.  (A) Left: example images showing ��������

fluorescence expression in Oxt-Cre; Ai3 mouse (green), OXT immunostaining (red), and ��������

overlap between Ai3 signal and OXT IF. Right: percentage of Ai3 positive neurons colocalized ��������

with OXT IF positive neurons. n = 1011 neurons from 2 mice. (B) Experimental procedure. ��������

Mice were treated in three different feeding conditions (Left), then PVN OXT neurons were ��������

recorded and labeled with biocytin (Middle), and neuronal morphology and spatial location ��������

were imaged and reconstructed (Right). (C) The Paxinos brain reference atlas used to map ��������

the recorded PVN OXT neurons. (D) Electrophysiological (Top) and morphological (Bottom) ��������

properties extracted and analyzed in this study. ADP (%) indicates the probability of ADP ��������

occurrence. �7 , �8  indicate inter-spike interval1 and interval2, respectively. D, dorsal; L, ��������

lateral to 3rd ventricle. ��������
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 ��������

Figure 2. Physiological properties of PVN OXT Magno and Parvo Neurons.  (A) ��������

Representative traces from Magno (Left) and Parvo (Right) PVN OXT neurons. Top: current ��������

injection protocols; Bottom: neuronal responses. Blue dash line indicates -100 mV membrane ��������

potential level, and the duration between red dash lines is the spike latency. (B) Distribution ��������

of spike latency and minimum voltage depolarizing rate following relief from hyperpolarization ��������

of Magno (red) and Parvo OXT (green) neurons. Blue dashed line indicates the boundary ��������

between Magno and Parvo neurons. Insets: example traces of a Parvo neuron (top) with a ��������

long spike latency and a Magno neuron (bottom) with a short spike latency. (C) Left: ��������

Summary about the shortest latency to spike following relief from hyperpolarization for Magno ��������

and Parvo neurons. n = 156 Magno neurons, and 68 Parvo neurons. Right: distribution of ��������

spike latency from all PVN OXT neurons and ksdensity fitting of the distribution. (D) Summary ��������

data about the first inter-spike interval (Interval1 or ISI1, bottom left) and adaptation index ��������

(bottom right) of repolarization induced spikes. (E) Example traces of irregular firing, regular ��������

firing, and phasic firing. (F) Summary about the coefficient of variance of spontaneous activity ��������

in Magno and Parvo neurons. (G) – (K) Same as (F), but for spontaneous firing rate (G), ��������

resting membrane potential (H), membrane time constant (I), input resistance (J), and ��������

membrane capacitance (K). (L) Spike number change with different current injections. (M) ��������

Examples of averaged action potential (Left) and voltage change phase (Right) of Magno ��������

(Top) and Parvo (Bottom) neurons. Inset figure in Bottom-Left denotes a prominent ��������

after-depolarization (ADP). (N) Summary about spike threshold in Magno and Parvo neurons. ��������

(O) – (V) Same as (N), but for spike amplitude (O), spike peak (P), rise time and decay time ��������
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(Q), depolarizing rate maximum (R), repolarizing rate maximum (S), spike half width (T), AHP ��������

amplitude and latency (U), and ADP amplitude and occurrence probability (V). n = 151-158 ��������

Magno neurons and 67-68 Parvo neurons for each electrophysiological parameters, * p < ��������

0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, not significant, Mann-Whitney test. ��������

Horizontal lines in violin plot indicate quartiles and median. ��������

 ��������

Figure 3. Morphological properties of PVN OXT Magno and Parvo Neurons.  (A) The ��������

reconstructed morphologies and spatial distribution of 156 Magno (red) and 57 Parvo (green) ��������

neurons in different PVN subregions. D, dorsal, L, lateral to 3rd ventricle. Left number, ��������

distance to bregma (mm). (B) Soma area of Magno and Parvo OXT neurons. (C) – (H) Same ��������

as (B), but for primary dendrites number (C), total dendritic length (D), mean dendritic length ��������

(E), branch nodes number (F), branch ending number (G), and process area (H). (I) A Sholl ��������

analysis example. (J) and (K) Sholl analysis of Magno and Parvo neurons about total number ��������

of Sholl intersections (J) and dendritic length per 10 ��m (K). n = 156 Magno neurons, and 57 ��������

Parvo neurons, **** p < 0.0001, ns, not significant, Mann-Whitney test. Horizontal lines in ��������

violin plot indicate quartiles and median. ��������

 ��������

Figure 4. Correlation between morpho-ele ctric properties in PVN OXT Magno and ��������

Parvo Neurons. (A) Correlation index (labeled by colormap) and significant level (labeled by ��������

circle size) between every pair of morpho-electric properties in Magno (Bottom left) and ��������

Parvo neurons (Upper right). (B) Scatter plot of spike half width and spike decay time from ��������

every Magno (red circles) and Parvo (green circles) neurons. The relation between half width ��������
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(HW) and decay time (DecT) was linearly fitted for Magno (red line) and Parvo (green line) ��������

neurons, separately. (C) – (K) Same as (B), but for the relation between spike amplitude ��������

(Amp) and repolarizing rate maximum (RepoR) (C), total dendritic length (TDL) and convex ��������

hull of 2D process area (HullA) (D), mean dendritic length (MDL) and dendritic node number ��������

(NodeN) (E), TDL and repolarizing rate maximum (RepoR) (F), TDL and membrane ��������

capacitance (Capa) (G), spike threshold (Thre) and DecT (H), spontaneous firing rate (sFreq) ��������

and spike rise time (RisT) (I), input resistance (Rin) and membrane time constant (Tau) (J), ��������

and MDL and DecT (K). n = 146 Magno neurons, and 57 Parvo neurons. Pearson’s ��������

coefficient correlation two-sided. Full name of abbreviations: Half width (HW), Decay time ��������

(DecT), Repolarizing rate maimum (RepoR), Rise time (RisT), AHP latency (AHPLat), Spike ��������

threshold (Thre), Input resistance (Rin), Resting membrane potential (RMP), Spontaneous firing ��������

rate (sFreq), Adaption index (AdpI), Spike latency (SpkL), Depolarizing rate maximum (DepoR), ��������

Spike amplitude (Amp), Spike peak (Peak), AHP amplitude (AHPAmp), Membrane time constant ��������

(Tau), ADP occurrence (ADPOcc), Membrane capacitance (Capa), Interval1 (ISI1), ADP ��������

amplitude (ADPAmp), Coefficient of variance (CV), Bursting (Burst), Soma area (SomaA), Total ��������

dendritic length (TDL), Process area (HullA), Mean dendritic length (MDL), Ending number ��������

(EndN), Node number (NodeN), Primary dendrites number (DenN). ������ ��

 ��������

Figure 5. The morphological properties change of PVN OXT neurons along the ��������

rostral-caudal axis. (A) Proportion of Magno and Parvo OXT neurons at each bregma level ��������

we recorded along the rostral-caudal axis. Different colors below from left to right indicate ��������

-0.58 mm, -0.70 mm, -0.82 mm, -0.94 mm, -1.06 mm, and -1.22 mm away from bregma. (B) – ��������
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(H) Same as (A), but for soma size (B), primary dendrites number (C), dendritic endings (D), ��������

branch nodes (E), total and mean dendritic length (F and G), and process area (H) change ��������

along the rostral-caudal axis. n = 213 neurons. Kruskal-Wallis test. (I) Polar histograms of the ��������

OXT neurons recorded in different rostral-caudal parts of PVN. Left figures are the ��������

polarization summary in different PVN parts. D, dorsal, L, lateral. n = 213 neurons. ��������

 ��������

Figure 6. The physiological properties ch ange of PVN OXT neurons along the ��������

rostral-caudal axis. (A ) Distribution spike latency of PVN OXT neurons along the ��������

rostral-caudal axis. Different colors below from left to right indicate -0.58 mm, -0.70 mm, -0.82 ��������

mm, -0.94 mm, -1.06 mm, and -1.22 mm away from bregma. (B) – (T) Same as (A), but for ��������

the interval1 (B) and adaptation index (C) of repolarization induced spikes, spontaneous firing ��������

rate (D), input resistance (E), membrane capacitance (F), coefficient of variance (G), resting ��������

membrane potential (H), membrane time constant (I), spike amplitude (J), the probability of ��������

ADP occurrence (K), AHP amplitude (L), spike threshold (M), spike peak (N), spike rise time ��������

and decay time (O), half width (P), maximum spike depolarizing rate (Q) and spike ��������

repolarizing rate (R), spike AHP latency (S), and ADP amplitude (T). n = 204-213 neurons for ��������

each parameter, Kruskal-Wallis test. Error bars indicate SEM. ��������

 ��������

Figure 7. OXT Magno neurons in PVN rostral  and caudal regions exhibit distinguishing ��������

morphological properties. (A) Soma size between rostral Magno (red), caudal Magno ��������

(yellow), and Parvo (green) OXT neurons. Different colors below from left to right indicate ��������

-0.58 mm, -0.70 mm, -0.82 mm, -0.94 mm, -1.06 mm, and -1.22 mm away from bregma.��The ��������
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three PVN parts close to bregma (-0.58 mm, -0.70 mm, -0.82mm) were defined as rostral ��������

region, and the other three parts (-0.94 mm, -1.06 mm, -1.22 mm) as caudal region. n = 89, ��������

67, 54 for each group. (B) – (G) Same as (A), but for the primary dendrites number (B), ��������

ending number (C), node number (D), total dendritic length (E), mean dendritic length (F), ��������

and process area (G). ** p < 0.01, *** p < 0.001, **** p < 0.0001, Kruskal-Wallis with Dunn’s ��������

multiple comparisons test. Error bars indicate SEM. ��������

 ��������

Figure 8. OXT Magno neurons in PVN rostral  and caudal regions exhibit distinguishing ��������

physiological properties. (A) Difference of spike latency between rostral Magno (red), ��������

caudal Magno (yellow), and Parvo (green) OXT neurons. Different colors below from left to ��������

right indicate -0.58 mm, -0.70 mm, -0.82 mm, -0.94 mm, -1.06 mm, and -1.22 mm away from ��������

bregma.��The three PVN parts close to bregma (-0.58 mm, -0.70 mm, -0.82mm) was defined ��������

as rostral region, and the other three parts (-0.94 mm, -1.06 mm, -1.22 mm) as caudal region. ��������

n = 85, 66, 54 for Magno-Rostral, Magno–caudal, and Parvo, respectively. (B) – (T) Same as ��������

(A), but for the ISI1 (n = 85, 63, 53 for each group, B), adaption index (n = 83, 58, 50 for each ��������

group, C), spontaneous firing rate, (n = 85, 65, 54 for each group, D), input resistance (n = 85, ��������

66, 54 for each group, E), membrane capacitance (n = 85, 66, 54 for each group, F), ��������

coefficient of variance (n = 83, 64, 54 for each group, G), resting membrane potential (n = 85, ��������

66, 54 for each group, H), membrane time constant (n = 85, 66, 54 for each group, I), spike ��������

amplitude (n = 83, 64, 54 for each group, J), ADP occurrence (n = 83, 65, 54 for each group, ��������

K), AHP latency (n = 83, 66, 53 for each group, L), spike threshold (n = 83, 64, 54 for each ��������

group, M), spike peak (n = 83, 64, 54 for each group, N), spike decay time (n = 82, 64, 54 for ��������
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each group, O), spike half width (n = 83, 64, 54 for each group, P), spike depolarizing and ��������

repolarizing maximum rates (n = 83, 64, 54 for each group, Q and R), AHP amplitude (n = 83, ��������

66, 53 for each group, S), ADP amplitude (n = 83, 65, 54 for each group, T). * p < 0.05, ** p < ��������

0.01, *** p < 0.001, **** p < 0.0001, Kruskal-Wallis with Dunn’s multiple comparisons test. ��������

Error bars indicate SEM. ��������

 ��������

Figure 9. Unsupervised classification  of PVN OXT neurons based on their ��������

morpho-electric properties. (A) Morpho-electric properties (indicated by labels at the ��������

bottom) collected from each neuron. Each property values were z-scored. Rows are sorted ��������

into clusters indicated by left marks. The information about gender, behavior, Magno-Parvo ��������

type, mapping, and PVN subregions are shown in the right columns. (B) Two-dimensional the ��������

Uniform Manifold Approximation and Projection (UMAP) plot based on the principal ��������

components of morpho-electric properties. (C) Distributions of six subtypes PVN OXT ��������

neurons along the rostral-caudal axis (labeled with different colors at the bottom). (D) ��������

Morphological and physiological properties of one example neuron from ME-1a subgroup. (E) ��������

– (I) Same as (D), but for the example neurons from ME-1b (E), ME-2a (F), ME-2b (G), ��������

ME-3a (H), and ME-3b (I) subgroups, respectively. D, dorsal, L, lateral to 3rd ventricle.  ��������

 ��������

Figure 10. Firing activities of PVN OXT neurons in different feeding states and the ��������

properties of ME-3b neurons. (A) Firing rate of Magno and Parvo neurons in Normal, ��������

Fasting, and Refeeding conditions. n = 48, 44, 62 neurons for Normal, Fasting, and ��������

Refeeding conditions in Magno group. n = 26, 24, 18 neurons for Normal, Fasting, and ��������
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Refeeding conditions in Parvo group. (B) Firing rate of ME-1, ME-2, and ME-3 oxytocin ��������

neurons in Normal, Fasting, and Refeeding conditions. n = 17, 22, 26 neurons for ME-1, n = ��������

24, 17, 29 neurons for ME-2, n = 28, 22, 17 neurons for ME-3 in Normal, Fasting, and ��������

Refeeding conditions, respectively. (C) Firing rate of ME-1a (n = 8, 8, 10 neurons), ME-1b (n ��������

= 9, 14, 16 neurons), ME-2a (n = 5, 6, 6 neurons), ME-2b (n = 19, 11, 23 neurons), ME-3a (n ��������

= 5, 3, 4 neurons), and ME-3b (n = 23, 19, 13 neurons) OXT neurons in Normal, Fasting, and ��������

Refeeding conditions. *p < 0.05, Mann-Whitney test for Fasting and Refeeding condition. (D) ��������

Top: example slice of PaPo with neurons labeled by biocytin immunostaining. Bottom: ��������

distribution of ME-3a, ME3b and ME-2a neurons in the PaPo. (E) Top: venn diagram of ME-3, ��������

PaPo and Parvo neurons. Bottom: venn diagram of ME-3b, PaPo and Parvo neurons. (F) ��������

Total dendritic length of 6 subtypes of OXT neurons. Top lines indicate the significant level of ��������

difference between ME-3b with other 5 subtypes. (G) – (J) Same as (F), but for spike decay ��������

time (G), ADP occurrence (H), membrane capacitance (I), and soma area (J). n = 26, 39, 17, ��������

53, 12, 56 neurons for ME-1a, ME-1b, ME-2a, ME-2b, ME-3a, ME-3b respectively. Different ��������

colors labeled circles in ME-3b subgroup indicate Magno (magenta) and Parvo (green) ��������

neurons. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, Kruskal-Wallis test. Error bars ��������

indicate SEM. ������ ��

 ��������

Figure 11. Schematic depiction of the main findings in this study. The main findings ��������

include the gradient change of Magno and Parvo OXT neurons along the rostral-caudal axis ��������

(Top), correlation of morpho-electric features (Bottom Left), and six subtypes of PVN OXT ��������

neurons identified by the unsupervised cluster analyses and the involvement of ME-3b ��������
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subtype in feeding behavior (Bottom Right). ��������
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Table 1     

Physiological and morphological properties of PVN Magno OXT neurons are largely similar in male and female mice 

 Female (N = 13 mice) Male (N = 10 mice) n (F, M) P 

Electrophysiology     

Spontaneous firing rate (sFreq, Hz) 7.025±0.4322 5.959�f 0.4040 86, 69 0.1884 

Spike amplitude (Amp, mV) 53.64±1.008 54.10�f 0.9803 84, 68 0.8491 

Spike peak (Peak, mV) 25.13±0.8503 24.22�f 0.8233 84, 68 0.2978 

Rise time (RisT, ms) 0.8687±0.02726 0.8985�f 0.03608 83, 68 0.7417 

Decay time (DecT, ms) 1.928±0.07106 1.910�f 0.08454 83, 68 0.7613 

Depolarizing rate maximum (DepoR, mV/ms) 69.40±3.001 66.98�f 3.429 84, 68 0.4654 

Repolarizing rate maimum (RepoR, mV/ms) -28.52±1.446 -29.07�f 1.625 84, 68 0.8404 

Half width (HW, ms) 2.190±0.06667 2.199�f 0.08054 84, 68 0.9609 

Spike threshold (Thre, mV) -29.18±0.4159 -29.88�f 0.3957 84, 68 0.3118 

Resting membrane potential (RMP, mV) -61.03±1.193 -64.48�f 1.278 87, 69 0.0908 

Input resistance (Rin, M� ) 962.6±33.34 967.4�f 39.14 87, 69 0.9404 

Membrane time constant (Tau, ms) 29.36±1.250 30.28�f 1.143 87, 69 0.4765 

Membrane capacitance (Capa, pF) 33.33±1.703 33.85�f 1.658 87, 69 0.4377 

Spike latency (SpkL, ms) 84.04±3.348 82.29�f 4.038 87, 69 0.4683 

Interval1 (ISI1, ms) 40.33±1.332 36.85�f 1.130 86, 67 0.0630 

Adaption index (AdpI) 0.08965±0.01170 0.05192�f 0.01625 82, 64 0.1422 

AHP latency (AHPLat, ms) 18.45±0.8213 18.12�f 1.051 85, 69 0.8033 

AHP amplitude (AHPAmp, mV) 18.59±0.4939 18.04�f 0.6212 85, 69 0.5165 

ADP occurrence (ADPOcc) 0.07814±0.01815 0.1079�f 0.02807 84, 69 0.7818 

ADP amplitude (ADPAmp, mV) 1.135±0.1168 1.064�f 0.1096 84, 69 0.3864 

Bursting (Burst) 0 2 84, 69 �ü�ü�ü  

Coefficient of variance (CV) 0.4597±0.03834 0.5249�f 0.05383 84, 68 0.4906 

Morphology     

Soma area (SomaA, ��m2) 121.4±3.031 127.9�f 3.757 87, 69 0.2777 

Primary dendrites number (DenN) 2.437±0.1081 2.507�f 0.1161 87, 69 0.5594 

Node number (NodeN) 1.954±0.2988 2.580�f 0.3476 87, 69 0.0391* 

Ending number (EndN) 4.195±0.3563 4.797�f 0.4075 87, 69 0.1416 

Process area (HullA, ��m2) 11709±2002 15421�f 3676 87, 69 0.3399 

Total dendritic length (TDL, ��m) 424.9±43.50 471.0�f 50.85 87, 69 0.4216 

Mean dendritic length (MDL, ��m) 166.5±13.81 182.9�f 16.55 87, 69 0.5108 

     

Note: * p < 0.05, Mann-Whitney test 
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Table 2     

Physiological and morphological properties of PVN Parvo OXT neurons are largely similar in male and female mice 

 Female (N = 13 mice) Male (N = 10 mice) n (F, M) P 

Electrophysiology     

Spontaneous firing rate (sFreq, Hz) 7.073±0.6706 5.504�f 0.5919 33, 35 0.0623 

Spike amplitude (Amp, mV) 56.42±1.693 57.61�f 1.165 33, 35 0.9514 

Spike peak (Peak, mV) 26.05±1.301 26.77�f 1.016 33, 35 0.8263 

Rise time (RisT, ms) 0.9091±0.05989 0.8114�f 0.04724 33, 35 0.2934 

Decay time (DecT, ms) 1.673±0.1072 1.506�f 0.07124 33, 35 0.3377 

Depolarizing rate maximum (DepoR, mV/ms) 79.48±6.846 84.41�f 5.883 33, 35 0.5831 

Repolarizing rate maimum (RepoR, mV/ms) -35.64±3.126 -38.54�f 3.090 33, 35 0.4715 

Half width (HW, ms) 1.967±0.1313 1.771�f 0.08741 33, 35 0.4285 

Spike threshold (Thre, mV) -30.36±0.6139 -30.84�f 0.5022 33, 35 0.5747 

Resting membrane potential (RMP, mV) -61.99±1.803 -64.14�f 1.561 32, 35 0.2274 

Input resistance (Rin, M� ) 618.8±34.92 743.4�f 36.55 32, 35 0.0125* 

Membrane time constant (Tau, ms) 28.81±1.951 30.07�f 1.352 33, 35 0.2608 

Membrane capacitance (Capa, pF) 50.16±3.837 43.06�f 2.561 32, 35 0.1043 

Spike latency (SpkL, ms) 23.03±1.433 24.21�f 1.443 33, 35 0.6020 

Interval1 (ISI1, ms) 81.36±8.645 74.21�f 6.777 32, 35 0.7153 

Adaption index (AdpI) 0.3818±0.05068 0.4131�f 0.03732 30, 33 0.9836 

AHP latency (AHPLat, ms) 17.56±1.786 15.79�f 1.700 33, 35 0.4696 

AHP amplitude (AHPAmp, mV) 16.39±0.5885 16.62�f 0.7214 33, 35 0.5500 

ADP occurrence (ADPOcc) 0.2128±0.05506 0.2490�f 0.05773 33, 35 0.7145 

ADP amplitude (ADPAmp, mV) 1.093±0.1900 1.026�f 0.1213 33, 35 0.5582 

Bursting (Burst) 0 4 33, 35 �ü�ü�ü  

Coefficient of variance (CV) 0.3880±0.08731 0.4209�f 0.07184 33, 35 0.5500 

Morphology     

Soma area (SomaA, ��m2) 112.2±4.200 125.7�f 7.260 28, 31 0.4645 

Primary dendrites number (DenN) 3.308±0.2403 3.355�f 0.1943 26, 31 0.9179 

Node number (NodeN) 5.654±0.7337 5.645�f 0.4942 26, 31 0.7100 

Ending number (EndN) 8.500±0.8362 8.581�f 0.6218 26, 31 0.7401 

Process area (HullA, ��m2) 30712±3731 33102�f 4069 26, 31 0.7566 

Total dendritic length (TDL, ��m) 935.4±88.73 873.6�f 74.71 26, 31 0.6277 

Mean dendritic length (MDL, ��m) 288.5±20.49 259.3�f 17.29 26, 31 0.2346 

     

Note: * p < 0.05, Mann-Whitney test 

 

 


